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Preface

This report contains the 1997 annual progress reports of the research fellows and
students supported by the Center for Turbulence Research. The Annual Research
Briefs as well as the proceedings of the summer programs are now available at CTR’s
site on the world wide web (http:/ /www—fpc.stanford.edu/ CTR/welcome.html).

Last year, CTR hosted fourteen resident Postdoctoral Fellows, seven Research
Associates, three Senior Research Fellows, and supported four doctoral students
and eleven short term visitors. The major portion of Stanford’s doctoral research
program in turbulence is sponsored by the United States Office of Naval Research
and the Air Force Office of Scientific Research. Many students supported by these
programs also conduct their research at the CTR, but their works are not included
in this report.

In September 1997, the U.S. Department of Energy (DOE) selected Stanford
as one of five universities to participate in a long term research program aimed at
enhancing numerical simulation capabilities for complex physical systems. DOE has
also made its unique supercomputers available to the university participants in this
program. It appears that CTR will play an important role in this program because
turbulence is a major component in the overarching problems being addressed by all
five of the new DOE Centers. Stanford’s program, to be carried out in a new Center
for Integrated Turbulence Simulations (CITS) co-located with the CTR, involves
the simulation of the turbulent flow in a complete gas turbine engine, which i1s
expected to lead to a new paradigm for aircraft engine design. We expect CTR’s
experience and expertise to contribute greatly to this project, and the engineering
challenge provided by the program should induce a number of relevant fundamental
investigations at CTR.

The first group of reports in this volume is concerned with fundamental issues in
large eddy simulation, LES. These include derivation of the constitutive equations,
filtering, and wall modeling. The latter is a pacing item for practical simulation
of high Reynolds number turbulent boundary layers. The next group of reports is
in Reynolds averaged turbulence modeling, which has always been emphasized at
CTR due to its importance to engineering analysis of complex flows. Our major
effort continued around extension and application of the V2F model to complex
fows and its implementation in general purpose NASA and industrial CFD codes.
The next group of reports is in turbulent combustion. We expect to expand CTR’s
effort in this area to include combustion in realistic geometries and complex chemi-
cal reactions. The fourth group of reports is concerned with turbulence physics and
control and simulation methodology. The flow control activity at CTR has devel-
oped to a point where it is being used in joint research activities with industry. We
also expect the CTR’s flow control program to have an impact on the problem of
combustion instabilities in gas turbine engines, which is an important part of the
aforementioned DOE project.



The CTR’s roster for 1997 is provided in the Appendix. Also listed are the mem-
bers of the Advisory Committee, which meets bi-annually to review the Center’s
program, and the Steering Committee, which acts on fellowship applications.

It is a pleasure to thank Mrs. Debra Spinks for her efforts in the daily management
of the Center and her compilation of this report.

Parviz Moin
William C. Reynolds
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Invariant modeling in large-eddy
simulation of turbulence

By M. Oberlack

1. Motivation and objectives

Since the derivation of the Smagorinsky model (Smagorinsky 1963), much re-
search has been dedicated to developing more reliable and physically plausible
large-eddy models for turbulence. Speziale (1985) made the first attempt to de-
rive realizable large-eddy models. He argued that any subgrid-scale (SGS) model
in large-eddy simulation (LES) of turbulence should be Galilean invariant, a funda-
mental invariance property (also called symmetry) of the Navier-Stokes equations.
In his investigation he found that many models violate this symmetry. The most
widely used model, the Smagorinsky model, is Galilean invariant.

However, Galilean invariance is only one of several symmetries of the Navier-
stokes equations. It will be seen later that several of the symmetries are violated by
common SGS models, the bulk of which contain the local grid size of the computa-
tion as a length scale. From a theoretical point of view, having an external length
scale in the turbulent model which is not related to any turbulent quantity violates
certain symmetries of Navier-Stokes equations. This has serious implications for the
overall performance of the model, which will be pointed out below. In particular,
certain scaling laws cannot be realized by the modeled equations in wall-bounded
flows (see Appendix A).

A differential equation admits a symmetry if a transformation can be obtained
which leaves the equation unchanged in the new variables. It is said the equation
is invariant under the transformation. Symmetries or invariant transformations are
properties of the equations and not of the boundary conditions, which are usually
not invariant. Symmetries and their consequences form some of the most fundamen-
tal properties of partial differential equations and illustrate many important features
of the underlying physics. The Navier-Stokes equations admit several symmetries,
each of them reflecting axiomatic properties of classical mechanics: time invariance,
rotation invariance, reflection invariance, two scaling invariances, pressure invari-
ance, material indifference, and generalized Galilean invariance, which encompasses
frame invariance with respect to finite translation and classical Galilean invariance.
Each of these symmetries is explained in Section 2.

For example, all known similarity solutions of the Euler and the Navier-Stokes
equations for laminar fows can be derived from symmetries (see Pukhnachev 1972).
Turbulent flows admit a wide variety of solutions derivable from symmetries. Some
of them, like jets and wakes, have global character (see e.g. Townsend 1976; Cantwell
1981) others only apply locally, e.g. in wall-bounded flows. Recently several new
scaling laws for turbulent wall-bounded flows were derived in Oberlack (1997a,b)
using symmetry methods, and all of these are local self-similar regions. A well
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known example, which is also among Oberlack’s results, is the logarithmic law of
the wall which has a restricted validity near the wall region but can be found in
many geometrically different flows. All the known local and global turbulent scaling
laws can be derived from symmetries.

In order to reproduce all global and local self-similar turbulent solutions with
an SGS model in LES of turbulence, it is a necessary condition that all the above
mentioned invariance properties of the Navier-Stokes equations should be built into
the SGS model. This implies certain restrictions for the functional form of the
model.

In LES of turbulence not only the SGS model is constrained by symmetries, but
so also is the filer function. Vreman, Geurts & Kuerten (1994) investigated whether
certain filter functions preserve the classical realizability constraint by Schumann
(1977). The key result in their analysis is that the filter kernel has to be positive in
order to ensure positive turbulent subgrid kinetic energy. They concluded that the
spectral cut-off filter is not suitable for LES since the kernel is negative for certain
values of its argument. Symmetries of the Navier-Stokes equations imply further
constraints for the filter function to be derived below. Moreover, it will be shown
that the form of filter function is consistent with the finding of Vreman et al..

The paper is organized as follows: In Section 2. all the known symmetries of the
Navier-Stokes equations are discussed. In Section 3 the concept of spatial averaging
is reexamined, and its implications for the SGS model and the filter function are
derived. In Section 4 several examples of proposed SGS models will be investigated
as to whether they obey or violate certain symmetries of the Navier-Stokes equa-
tions. Section 5 gives a summary and conclusions of the paper. In Appendix A
the effect on near-wall scaling laws will be investigated for the case when the SGS
model does not satisfy the proper scaling symmetries.

2. Symmetries of the Navier-Stokes equations

The Navier-Stokes and the continuity equations for an incompressible fluid writ-
ten in primitive variables in a Cartesian coordinate system are

Ou; Ou; _ Op 8%u; Ouy _
E“}‘Ukéx_k—“a;‘f'l/ﬁ and gx—k—o, (1)

where @, ¢, u, p, and v are, respectively, the spatial coordinate, time, the ve-
locity vector, the pressure normalized by the density and the kinematic viscosity.
Equations (1) admit several symmetries, each reflecting fundamental properties of
classical mechanics. In the following a list of all known symmetry transformations
will be given which preserve the functional form of (1) written in the new variables,
subsequently denoted by “*”.

I. Time invariance
An arbitrary time shift of the amount g

t"=t+a "=z, u* =y, PP=p vV=vy (2)
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has no effect on the functional form of (1).

II. Rotation invariance

Rotating the coordinate system and the velocity vector

t*=t, z; = Aijzj, uj = Aijuj, p'=p v =v (3)

by a finite but arbitrary angle in space, where A is the rotation matrix with AAT =
ATA = I and |A] = 1, preserves the form of Eq. (1) in the new variables after
multiplying the momentum equation with A. The superscripts T, I, and |-| denote,
respectively, the transpose of a matrix, the unit tensor, and the determinant.

III. Reflection invariance

The reflection symmetry in any direction z is given by

» __ * *
t* =t, TH, = —Tay Ug = "Ua

zh =1zp ,ug = ug with B#a, p*=p, V' =1, (4)

where the index a can be any of 1, 2, and 3, and B refers to the remaining two.

IV. Generalized Galilean invariance
Substituting

. 24
u"=u+(—i§, p‘=p—z-%t—:’- and v*=v (5)
into (1), where &(t) is any twice differentiable time dependent vector-function, does
not alter the functional form of (1). (5) covers two classical symmetries: (i) Invari-
ance with respect to finite translation in space is obtained for &(t) = b, where b is
a constant and (ii) the classical Galilean invariance is recovered if #(t) is a linear
function in time.
All symmetries (2)-(5) are also admitted by the incompressible Euler equations.

V. Scaling invariance

Considering v = 0, the two-parameter transformation

2
t*=¢t, =2, u' = %u, pt = (%) P (6)

is an invariant transformation of Eqs. (1), where £ and v are arbitrary positive
real numbers. If v # 0 and v is considered a parameter, then (6) is only a scaling
invariance provided 7 =¢.

Considering v as an additional independent variable, the full two-parameter scal-
ing invariance (6) for v # 0 is recovered if v is scaled as

vt = l:—u. (7)
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The two scaling groups corresponding to 7y and £ refer to the fact that in classical
mechanics time and space can be measured arbitrarily. Hence, scaling symmetries
are equivalent to dimensional analysis.

V1. Pressure invariance

An arbitrary time variation of the background pressure, here denoted by ©(t),
does not affect an incompressible flow. The corresponding symmetry transformation
is given by

t'=t ==z, u' =u, P'=p+e(t), v = (8)

VII. Material indifference

Consider the Navier-Stokes equations in a constantly rotating frame with a rota-
tion rate §23 about the z; direction and where all velocities only depend on z,, z,,
and t. The particular choice of the axis of rotation is not restrictive because of the
transformations (3) and (4). The transformation which leaves (1) form-invariant is
given by

t* = t, 1‘: = B,-j(t)xj, u:‘ = Bij(t)Uj + B,‘k(t)xk,

3
p* =p+ 2€) A (uld:ltg — u2d:t:1) - 59;(1'? + x%), v*=vyp (9)

where B(t) is the rotation matrix with BBT = BTB — I, |B| = 1, BiBj; =
€3ij€23 and Q3 is a constant. The line integral along the arbitrary curve Q in the
pressure transformation represents the usual two-dimensional stream-function. The
property of material indifference can be reversed if turbulence undergoes rotation-
like advection. This can be accomplished either by system rotation or stream-line
curvature. In this case turbulence tends to become two-dimensional with the axis
of independence aligned with the axis of rotation.

All the symmetry transformations have been obtained by group analysis, ex-
cept for the reflection symmetry (4), which does not form a continuous group.
Pukhnachev (1972) computed the first complete list of all continuous point symme-
tries (2), (3), (5), (6), and (8) by Lie group methods (see e.g. Ibragimov 1994,1995).
Unal (1994) added the scaling of viscosity (7). The transformation (9) is a well
known property of two-dimensional flows (see e.g. Batchelor 1967). From group
theoretical methods, it was first derived by Cantwell (1978). He computed it us-
ing Lie group analysis applied to the scalar stream-function equation of the two-
dimensional Navier-Stokes equations. In this approach the symmetry (9) is a clas-
sical point symmetry while in primitive variables it is a non-local symmetry. A
corresponding symmetry in three dimensions may not exist. In Oberlack (1997c)
it was shown that the three-dimensional Navier-Stokes equations in vector-stream-
function formulation admit only those symmetries which can be derived from the
Navier-Stokes equations in primitive variables. Recently, additional non-classical
symmetries have been obtained by Ludlow & Clarkson (1997). However, these
symmetries are not invariant transformations in the classical sense but instead can
only be used to obtain self-similar solutions of the Navier-Stokes equations.
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3. Invariant modeling and filtering

In contrast to the classical Reynolds averaging, in large-eddy simulation of tur-
bulence the averaging procedure is a spatial filtering defined as

cli(e) = [ Gla wlwEs (10)
The kernel G is normalized as
[ @ty =1 (11)
v

and G is assumed to be sufficiently smooth and decays rapidly enough for large
distances y so that the integrals converge.
In the present context f represents the instantaneous variables u and p. f 1s
decomposed as B
f=f+f (12)
where _
f = LIf)(=). (13)
Introducing the decomposition (12) for both the velocity and pressure into Eqgs. (1)
and applying the filter (10) leads to the equation of motion for the large-eddies

%-{-ﬁk%:—% u%g%—%%:% and %—::0. (14)
The SGS stress Tix is given by
it = Lik + Cix + Rix, (15)
where
Lix = Utg — itlk, (16)
Cix = uliix + Ui}, 17
Rix = uul. (18)

Lix, Cix, and Rj; are, respectively, referred to as the Leonard stress, the subgrid-
scale cross-stress, and the subgrid-scale Reynolds stress. If explicit filtering is em-
ployed, the Leonard stress may be computed from the flow field, and closure models
only need to be introduced for C;x and Ri. Though the decomposition of T is ar-
bitrary, (16)-(18) is a very common notation in LES. A different decomposition has
been proposed by Germano (1986) because it was found by Speziale (1985) that
both L;x and C;; are not Galilean invariant as discussed below.

The principal assertion of this work is given by the following statement: To
derive a physically consistent large-eddy model for turbulence the filtered Navier-
Stokes equations (14) with the SGS closure model must admit the same symmetries
s the Navier-Stokes equations (as given in section 2).

This has certain implications for the form of the model for (16)-(18) and puts
restrictions on the filter kernel G in (10) to be derived in the next two sub-sections.
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3.1 Implications for the subgrid-scale stresses

Suppose the filter (10) preserves the invariance properties of Navier-Stokes equa-
tions, then one can deduce from ( 14) and (15) that

ou} ou op* d*u;  Ory Ouy
bkt T R S * i YT d k _
ot UkGgr = Tger TV oz " 0z ¢ =0 (19
where
T = L + Cfi + R}, (20)
and
L:k = ﬁ:’ﬁz - ﬁ:ﬁ:, (21)
Cly = u'iu} + ufu'}, (22)
RY = u'lu'y. (23)

and “*” refers to any of the symmetry transformation variables in Section 2. The
following is a list of all constraints for the SGS model to properly reproduce all
symmetries of the equations of motion.
I Time invariance

From (2) it can be deduced that the resolved and the unresolved quantities trans-
form as

=%

t*=t+a’ 3‘=:L', u =u, u":u” ﬁ*=ﬁ’ P'*=P', V*=l/, (24)
which leads to the transformation rule for the stresses
T™=7or L'=L, C*=C and R* = R. (25)

Any model which is autonomous in time complies with this restriction. This is
almost always guaranteed since common models are expressed as functionals of z
and % only.
II. Rotation invariance

From (3) one can conclude that the rotation invariance for the large scale and
small scale quantities are given by

* (L

t=t, =} = Aijzj, al = Aijaj, ul Aijui, p*=p, p " =p', v* = (26)

As a consequence, the stress tensor (15) and its components (16)-(18) need to
transform as

T.“k = AimAknTmn,
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This is always guaranteed if the model is formulated in a “tensorially correct”
manner. The author is unaware of any existing model that violates this property.
III. Reflection invariance

Considering reflection in the z4-direction, one can infer from (4) that the filtered
and subgrid quantities transform as

t* =t, Ih = —Ta, g = —Ha ul " = —ug,
Ty =1g ,Ug=Ug ,ui,':u'ﬂ with B #a, p"=p, V" =, (28)

where a and 8 are defined according to the definitions below (4). Hence, the
reflection symmetry is preserved if

. w = -1 fori=a V k=a A i#k
T} = wTik, Where {w — 1 else . (29)
Similarly, one has the additional restrictions
I*k = U)L.‘k, _ _ : — .
* = wCix, where {: _ } f:l):ez o Vk=a Aigk (30)
= wRik
It appears that all common SGS models comply with reflection symmetry.
IV. Generalized Galilean invariance
Generalizing Speziale (1985), (5) and (12) are used to obtain
ds 24 .
=t 2" =zt+dt), @ = ﬁ+—£, wt =, P = ﬁ—z-%—;, pr=p, v =w.

(81)

From the latter result and (20), one can verify that
=T (32)

As pointed out by Speziale (1985), a corresponding simple transformation does not
exist for (16)-(18). Using (31) in (21)-(23), we find

.« _ ) d£|—'— —,—di:k
L} = Lix - P e (33)
. dz;— —dix
Ch=Cix + -d—tl"'k Ui (34)
R:k - Rg'k. (35)

Hence, L and Cj are not form-invariant, but their sum is. Germano (1986) tackled
the latter problem by redefining the turbulent stresses. He introduced modified
definitions for the quantities L, C, and R where each separate term is Galilean
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invariant. Since the decomposition is not unique, it appears to be preferable to test
the entire SGS model for T for Galilean invariance.

The requirement of Galilean invariance has nicely been demonstrated by Hartel
& Kleiser (1997), who have compared Galilean and non-Galilean invariant models
and different filter functions. The most striking result of their computation was a
negative dissipation if the model was not Galilean invariant.

V. Scaling invariance
From (6), (7) and (12) one finds

t* =€t 2" =z, @ = %ﬁ, u” = %u',
(2N e (Y, . P
r=(f)rr=(F) rr =g 2o
Applying these results to (20) yields
v 2
™= (E) T. (37)
Similarly one can deduce from (21)-(23) that
L= (1)2L, Cc" = (1)20 and R* = (Z)ZR (38)
4 € 4

has to be valid for any SGS model. It will be shown later that (37) is violated by
the classical Smagorinsky model. In Appendix A it will be demonstrated by inves-
tigating the two-point correlation equations that this symmetry breaking produces
incorrect statistical results, particularly in the near-wall region.

VI. Pressure invariance
The pressure invariance (8) should also be observed by the filtered quantities
which leads to

. *

=t z*=2, W =4, u=u PP=p+ed), Pr=p, vt =y, (39)

Since SGS models are usually modeled in terms of velocities, the pressure invariance
does not give any restrictions on the stresses L,C,Rand .
VII. Material indifference

From (9) and (12) one can conclude that

£ =t, 2 = Bij(t)z;, @} = Bij(t)i; + Byj(t)e;, u}* = Bij(t)u,
P* =P +2Q [o(G1dz; — fipdzy) — 30%(2? + 22), (40)

g

pr=p +2Q fQ (uidzy — uhdz;), v* =
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where B(t) obeys the definitions given below (9). Using the above relations in (20),
one finds that an SGS model captures material indifference if

Ti.k = BimBknTmn- (41)

As in (33)-(35), the separated stresses (16)-(18) are not form invariant. Using (40)
in (21)-(23) it can be concluded that the separated stresses L;x and Cix are not
form invariant under constant rotation rate and hence

L:k = BimBkuLmn -_ Bim;l-';Bknxn - B.‘mxmBan_,,;, (42)
C:‘k = BimBinCmn + BimEBknxn + BimxmBknE;r:a (43)
:k = BimBkann~ (44)

However, the sum of L;; and C;x is invariant. Employing the modified definition of
the stresses as introduced by Germano (1986) leads to form invariant stresses under
constant rotation rate in the sense that the last two terms on the right-hand side
of (42) and (43) disappear.

3.2 Implications for the filter kernel G

In order to incorporate the symmetries of the Navier-Stokes equations in the
large-eddy model, one needs to show that the transformation properties of u and
p are preserved for the filtered quantities # and p. This restricts the form of the
filter kernel as will be shown subsequently.

Time invariance (2) is always preserved no matter which filter kernel is chosen in
(10) because t does not explicitly appear in G.

Generalized Galilean invariance (5) implies a restriction on the form of the filter
kernel. Consider the Galilean invariance of the filtered velocities #* = u + d&/dt
given in (31). Employing the definition of the filter (10), one obtains

® %\ _ %/ %)\ 13 x 3 d&
[ Gy = [ GEnuwys (45)

Since the instantaneous unfiltered velocities admit the generalized Galilean invari-
ance, (5) can be substituted into the left-hand side. This yields

de

[ 6w+ av+) [un+ | dv= [ Gty @0

Because of (11), d&/dt cancels on both sides, and hence for arbitrary u the integrals

are equal, provided
G(z + &,y + &)= G(z,9) (47)

This functional equation can be transformed by differentiating with respect to Z.
The resulting first order partial differential equation has the unique solution

G =Gz —-vy) (48)
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An additional restriction on G is given due to frame invariance with respect to
a fixed rotation. From the rotation invariance of the filtered velocities u] = A;ju;
given in (26) and the definition of the filter, one can deduce that

/. 6@ vy = 4y [ 6 - vy (49)
Ve 1 %4

Employing (3), which results in d®y* = d®y, the two integrals are equal except for
the filter kernel. Hence, in order for (26) to hold for arbitrary u;, the condition

G(A(z - y)) = G(z —y) (50)

must be satisfied. For arbitrary A, the latter functional equation has the unique
solution

G =G(|z - yl). (51)

This corresponds to a known result from tensor invariant theory (see e.g. Spencer
1971): a scalar function depending on vectors or tensors can only depend on their
scalar invariants. Tensor invariant theory is widely used in Reynolds averaged
modeling; e.g. the scalar coefficient in the pressure-strain model depend only on
scalar invariants. In (51) G depends only on the magnitude of the separation vector,
which is the only invariant of a single vector. An additional consequence of (51) is
that the averaging volume V in (10) is restricted to a sphere with center .

The last restriction on G follows from scaling invariance (36). For the present
purpose the filter function G is not normalized, denoted by the superscript “v”,
Using (10) one can conclude from (36) that

Jv. G*(1=" -y Du ()" _ v [y (1= — ylu(y)dy
Jv. G (le* — y*|)dy* ¢ JyGi(lz - yhdPy

and a corresponding relation for the pressure, not shown here, needs to hold. Using
(6) the spatial scaling factor v remains in the argument of G* on the left-hand side
of (52). As a result, 7 can only cancel out for arbitrary u if G* has the following
form

(52)

G (|2 - yl) = Alx - y|* (53)

where A and a are arbitrary constants. Using (11), the final form of the filter G is

obtained
e M (54)

where R; refers to a sphere with center @ and radius . (54) preserves all the
symmetries in section 2. If the integration argument is sufficiently smooth, the
integral converges for all o > —3.

The time invariance, the reflection invariance, the pressure invariance, and the
material indifference, even though not explicitly considered during the derivation,
are consistent with (54).
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The constraint for the filter function needs to hold for any filter operation used
in LES. However, in practice it is only relevant for schemes that utilize an explicit
filter, e.g. in the test filter used in Germano et al. (1991). In some LES models the
actual form of the filter kernel does not appear explicitly in the computation, and
the constraints for the filter derived above are irrelevant.

The restrictions on the filter kernel derived in this sub-section are rarely met by
the filtering procedures used in practical applications. For computational conve-
nience, explicit filtering at a given location is often performed by averaging values
from adjacent grid points. As a result, in many applications, such as near-wall
shear flows, the grid is highly anisotropic, and condition (26) is violated. To inves-
tigate this matter of grid dependence in LES, some empirical tests were performed
by Scotti et al. (1997) to determine whether anisotropic meshes have an effect on
isotropic turbulence. They show that on an anisotropic pencil-like grid, isotropic
turbulence was severely influenced in an unphysical manner. However, by isotropiza-
tion of the test-filter many of the features of isotropic turbulence could be restored.
This result suggests that the isotropic filter kernel (51) may restore some of the
physical properties of turbulence in large-eddy simulations.

4. Invariant properties of proposed large-eddy models

Almost all of the existing SGS models for large-eddy simulation of turbulence
which have been proposed have the functional form:

Tix = Fik[6; z]. (55)

In order to capture all of the invariance properties of the Navier-Stokes equations,
(55) should reflect the same symmetries. Hence it is a necessary condition to have

Ti‘k = f,‘k[‘l—t';x‘] (56)

for all the transformations listed in Section 3.1. Nearly all SGS models proposed
in the literature conform with time translation, rotation, and reflection invariance.
However, as was first investigated by Speziale (1985), several SGS models (Birin-
gen & Reynolds 1981, Moin & Kim 1982, Bardina, Ferziger & Reynolds 1983) are
not Galilean invariant and, therefore, are also not invariant under the generalized
Galilean transformation (5). In the present investigation it will be shown that sev-
eral of the proposed SGS models are not scale invariant and not material indifferent.
However, it will be demonstrated that a certain class of models, namely the dynamic
models, obey all invariance properties derived in Section 3.

One of the most widely-used models in LES, the Smagorinsky model (Smagorin-
sky 1963), violates scale invariance but captures all other known symmetries. It is
given by

1 — = ~ 1 [/ Ou; ou
rik = 30kTmm = ~CA?|5|Si  where  Su =3 ('a%; + 5%"-) . (5T)
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A is the filter width which is usually taken to be a function of the local grid spacing.
In order to see the shortcoming of (57), Egs. (36), (37), and (57) are used in (56)
to yield

rik — %6;;;7‘,,.,,, = —CAY5I5ur" (58)
The latter expression is not form invariant since it is dependent on the arbitrary
scaling parameter 4. The reason for this problem is the explicit external length
scale that has been introduced into the model, which is not related to any turbulent
length scale. This imposed length scale is particularly damaging in turbulent wall-
bounded flows. To overcome this problem empirical wall-damping functions have
been adopted to obtain reasonable results in the near-wall region. Wall-damping
functions are widely used in conjunction with Reynolds averaged models. There,
it has long been known that this approach is not frame invariant, and several new
ideas have been put forward to overcome this problem.

Several new near-wall self-similar solutions or scaling laws have been derived in
Oberlack (1997a,b) which rely heavily on the scaling symmetry. All near-wall scaling
laws may be captured in a large-eddy simulation of turbulence when the symmetry
properties of the Navier-Stokes equations are preserved by the model. In Appendix
A it is shown by analyzing the two-point correlation equation that the Smagorinsky
model is not able to capture important near-wall scaling laws. It can be concluded
that any model which contains a fixed external length scale, and which does not
account for the proper turbulent length scale, will violate the scaling symmetry.
Since the Smagorinsky model is only written in terms of the strain rate S, material
indifference is guaranteed.

A model which violates both scale invariance and material indifference is the
structure-function model by Métais & Lesieur (1992). The latter problem has al-
ready been reported by Meneveau (1996). The proposed SGS model is of the form

Tk — %6.*7',,",, = CSFA((a(z + 7) — a(2))2) /25 (59)

where C5F | and () are, respectively, a model constant and a spatial average. Using
the condition (56) in conjunction with the transformation (40) and (41) yields

1 B _ 1=
Tik — §6ik7'mm = CF A((Bmy(= + 1) — B(my(2) — 53l(m)93"'l)2>;sik- (60)

The latter expression is not of the form (59) since it contains an additional rotation
term. Hence, the structure-function model is not materially indifferent. As for the
Smagorinsky model, one can also show that (59) is not scale invariant.

A class of SGS models which have a similar deficiency are those explicitly con-

taining the rotation rate
_ 1 / Ju; aﬁj
o= = 1. 1
Bij 2 (69:,' 3:5;) (61)
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Lund & Novikov (1992) derived the most general form of SGS model comprising all
possible combinations of the strain and the rotation rate tensors. They proposed a
model of the form

3

Tik — %&k"'mm = A2 [Cl|‘§|§|k +C; (gimgmk - Sik S'mnslmn)

+Cs (Rimfzmk _ ?Rm,.fz,,,,.) +Ct (Sim Bk — RimSm)
s (SimSmnBoni — fz.-,,.s,,.,.snk)] . (62)

For the same reason as the previous two models, (62) is also not scaling invariant.
Violation of material indifference can be shown by computing the rotation rate (61)
under the transformation (40) which yields

R:j = BixBj1Rii + €kii (63)

Using this in (62), the required form of (41) under constant rotation cannot be
recovered since the frame rotation term, i.e. the last term of (63), does not cancel
out.

An SGS model which captures all the invariance requirements derived in Section
3 is the dynamic subgrid-scale model of Germano et al. (1991). They proposed a
procedure which, used in conjunction with the classical Smagorinsky model, results
in the following SGS model

1 (ﬁmﬁn - ﬁmﬁn)smn

Tik — 26k Tmm = —————— 2|58 (64)
(4) 1518 mnSmn = 151554550

3

Here, all the tilded quantities refer to the “test”-filter
=) = [ G phwdy (65)

which corresponds to the filter length A and A > A. The test-filter quantities are
explicitly computed from the flow field. The resolved quantities are still denoted
by an overbar. The dynamic model contains the ratio of two length scales, which
is a dimensionless number, and therefore no external length scale is imposed to
break symmetries. Consequently, the scaling invariance (37) is recovered, as can be
shown by using (36), provided the proper filter function is utilized. It is straightfor-
ward to prove that frame invariance, generalized Galilean invariance, and material
indifference are also captured by the dynamic model.

Since its publication by Germano et al. (1991), several modified versions of the
dynamic model have been proposed. The model by Lilly (1992) keeps the Smagorin-
sky model as the base model, but the dynamic procedure is modified. Zang et
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al. (1993) used the mixed model, first introduced by Bardina et al. (1983), as a
new base model. In addition, they employed Lilly’s modification of the dynamic
procedure. Yoshizawa et al. (1996) developed a new base model and also adopted
Lilly’s modification of the dynamic procedure. The dynamic mixed model by Zang
et al. is further extended by Salvetti & Banerjee (1995). This new model contains
two parameters which are both computed with a modified dynamic procedure. It
can easily be shown that all the latter modified versions of the dynamic model cap-
ture the symmetry requirements developed in Section 3. It should be noted that
the dynamic procedure only restores scaling invariance, which may be violated by
certain base models. Other deficiencies such as the violation of Galilean invariance
or material indifference cannot be repaired by the dynamic procedure.

So far, it was tacitly assumed that the symmetries are not broken by the filtering
process. However, some of the common filter functions are not consistent with the
symmetries of the Navier-Stokes equations. One of these is the Gaussian filter

_13_:1/_!2] , (66)

G-.—.Wa/zAaexp[ A2

since it does not match the form (54). The scaling symmetry is violated by (66).
Another common filter function which is not consistent with the form of (54) is
the spectral cut-off filter. In physical space it is given by

o ﬁ sin T[’ch:t—. ;;/z)] ‘ (67)

(67) violates both rotation and scaling invariance. It has already been pointed out
by Vreman et al. (1994) that the latter filter should not be utilized as it may lead
to unrealizable results. In Liu et al. (1994) it was shown by analyzing experimental
results of a turbulent jet that (67) has a very prejudicial influence on the overall
statistical behavior of SGS models.

The classical isotropic top-hat filter

c={4—ﬂ3A if lo -yl <A (68)
0 otherwise

is of the form (54) with a = 0. Hence, it preserves all symmetry requirements of
Navier-Stokes equations.

5. Summary and conclusions

The Navier-Stokes equations admit certain symmetries, that is, there are certain
form-invariant transformations which preserve the equations. These symmetries are
one of the most fundamental properties of the equations of motion. They reflect
many features of classical mechanics. It was shown recently that certain statis-
tical properties of turbulent shear flows follow from these symmetries (Oberlack

1997a/b).
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To capture those statistical features of the Navier-Stokes equations that are as-
sociated with symmetries, the symmetries should be built into the SGS models and
the filter functions in LES of turbulence. This leads to necessary conditions on the
functional form of the SGS model and the filter kernel.

One particular symmetry, scale invariance, is violated by the most common SGS
model, the Smagorinsky model, because it contains the grid size as an explicit
length scale. This seriously impairs the ability of the model to describe turbulence.
In particular, in near-wall turbulent flows it is known that the Smagorinsky model
performs poorly and wall damping functions have to be used. In Appendix A it
is shown that the violation of the scaling symmetry excludes important turbulent
near-wall scaling laws such as the log law and the algebraic law. Other models
such as the structure function model by Métais & Lesieur (1992) violate material
indifference.

It appears that the dynamic Smagorinsky model by Germano et al. (1991) and
its successors (e.g. Lilly 1992, Zang et al. 1993, Yoshizawa et al. 1996, Salvetti
& Banerjee 1995) conserve the symmetries of Navier-Stokes equations. In fact,
numerical simulations have shown (see Germano et al. 1991) that the dynamic
model captures the proper near-wall behavior without introducing any artificial
wall treatment such as damping functions.

The symmetry restrictions for the filter function are severe in the sense that only a
very confined class of filters is allowed. For example, only a spherical filter function
admits finite rotation invariance. The consequences of anisotropic filter functions
may be illustrated by a simple example. Consider a simulation of homogeneous
turbulent shear flow where explicit filtering is employed. The integration domain of
the filter function may have the form of a box whose edges are aligned with the grid,
which is chosen to be parallel to the mean flow. In homogeneous shear the dominant
turbulent structures have a certain inclination to the mean flow. If the grid and the
Slter were instead chosen to be parallel to this inclination, averaging would take
place over different flow structures. As a consequence, large scale quantities such
as the Reynolds stress tensor would exhibit different growth rates. Since a model
should be frame independent, the latter result is in contradiction to the basic physics
of the problem.

However, the practical implications may be less severe than they appear. Since
explicit filtering takes place on very few mesh points, the numerical truncation
error may be of the same order of magnitude as the error caused by a non-spherical
filter. Numerical tests for different applications need to be performed to determine
how closely the filter form given by (54) has to be matched. A first test towards
this requirement has been carried out by Scotti et al. (1997). An isotropized test-
filtering in conjunction with the dynamic model on a highly anisotropic pencil-like
mesh considerably improved the LES of isotropic turbulence.

An approach to overcome the very restricted form of the filter function may be
to introduce the strain rate into the filter function. Since the strain rate introduces
three additional directions corresponding to its principle axes, a more complex ge-
ometry for the filter volume may be in order.
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Another consequence of the required spherical form of the filter appears to be its
use in combination with wall-bounded flows. Close to solid walls the requirement
that the filter be spherical filter is always violated, and hence certain symmetries
are broken. However, the symmetries listed in Section 2 are only properties of
the Navier-Stokes equations. Symmetries are always broken by arbitrary boundary
conditions. One can conclude that a non-spherical filter near a solid wall is not a
restriction of LES, but a consequence of boundary conditions for turbulence models
in general.

It appears that future improvements for LES models should be along the lines
of the dynamic model since it mimics fundamental properties of the Navier-Stokes
equations. Despite its known superior performance, it has problems with stability
since the model coefficient in the SGS model may become negative. If the flow under
investigation possesses a homogeneous direction, averaging of the model coefficient
in that direction seems to stabilize the simulation. In more complex geometries
a clipping procedure is introduced which sets a negative model coefficient to zero.
However, the first approach may violate rotation invariance since a preferred direc-
tion has been introduced. The clipping approach seems to obey all the symmetry
properties of the Navier-Stokes equations but appears to be unrelated to Navier-
Stokes equations.
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Appendix A. Two-point correlation equation of LES models containing
an explicit external length scale

To investigate why SGS models containing an explicit length scale are inconsistent
with certain near-wall scaling laws, two-point correlation equations derived from
LES models are analyzed. The standard Reynolds decomposition is given by

u=(u)+u', p=(p)+p, (A1)

where the instantaneous velocity @ and the pressure p is assumed to be computed
by a LES in conjunction with a certain SGS model and (-) denotes an ensemble
average. Using this, several two-point quantities may be defined
Rij(z,7) = (ui(z) uj(=z)), (42)
Rixyj(z, 1) = (ui(z)up(z)ui(2D)), Rigy (2, 7) = (ul(2)u(D)ul(z(1)))(43)
Pj(z,r) = ('(z) uj(2V), Qj(z,7) = (uj(x)p'(=z™)) (A4)
Seinyi(=:7) = (rin(@)uj(@™M)), Ty, ) = (ui(z)mjr(zV)). (45)
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Using the latter definitions the two-point correlation equations are derived from
(14)

DRij _ . O@)i o Ou) dRi;
Ry _p,, B g B st - (o0
OP; OP; 0Q; 6R(,-k)j 0 . N
B [Bx.- o T 67‘,-] ~ et + 5oy [Raws — Rign)]
3Sux; 0
- 5+ 5 [ = Tw)] (46)

where D/Dt = 8/t + (u)x0/0z. The tensors in (A2)-(A5) are functions of the
physical and correlation space coordinates, # and r = () — @ respectively. The
vertical line denotes the derivative to be taken with respect to @ and evaluated at
T+

In Oberlack (1997a) the 22-component of the two-point correlation equations
emerging from the Navier-Stokes equations (A6 with S(ixy; = Tijx) = 0) for parallel
mean flows of the form (u) = ((u)1(22),0,0)T was investigated. The entire system
contains one physical and three correlation coordinates and consists of equation
(A6) and two Poisson equations for P; and Q; (not shown here). It was shown that
for four distinct mean velocity profiles similarity variables can be introduced so that
the number of independent variables is reduced by one.

The most general self-similar solution, with all group parameters different from
zero, is given by

q 1—% q7
a3 = C (332 + -i) - ) (A7)
51 q1— G5
~_r1+% L ) ~__7‘3+¢91%
nM=—"g 2T T qs’ 3= —"qa° (A8)
i172+q1 .’l¢2+q1 112+q1
A 2(1-7%) -
Ry =(z2+ oy Rj2, (A9)
N N
Py=(z2+— Py, Q=22+ — Q2, (A10)
U q1
N W20
Rakyz = (T2 + @ Raiy, Baen =72+ Ra2i){(A11)

where the “~” correlation quantities only depend on (A8). From (AT7)-(All) one
can conclude that scaling of the fluctuation velocity is according to

138

u = (.»;z + Z—“) T (A12)
1



20 M. Oberlack

The second similarity solution is given by ¢; = gs, which corresponds to the
log-law and (A7) changes to

U] = q—71n (ltz + 2‘1) + C,, (A13)
)] )]

while the similarity coordinates (A8) are unaltered and the correlation functions
R22, Pz, Qz, R(Qk)z, and Rg(gk) are un-scaled.

If ¢ = 0 and g5 # 0, the exponential law holds and the new similarity variables
are given by

i = Cs exp (—q—s.’tz) + q—T, (A14)
q4 qs

fl=r1+ 2-2-332, Te=rz, f3=r3+ q—aﬂfz, (A15)

94 q4
Ry; = e—zﬁtzﬁzz, (AIG)
Py =e?0P, Q= e?1Q,, (A17)

_ -—3’-‘-22 > _ _3!.1;2 .
R(2k)2 =e R(Zk)?a R2(2k) =e R2(2k)- (A18)

where similar to (A7)-(A11) the “™” correlation quantities only depend on (A15).
It can be concluded that the fluctuation velocities scale as

u' =e"wig (A19)
Finally, if ¢; = ¢5 = 0, the mean velocity is given by
) = gqrzy + Cy (A20)

while the similarity variables (A15) are the same as for the exponential case, but
the correlations Ry2, P, Q,, R(2k)2, and Ry(yy) stay un-scaled.

In order to see that some common SGS models are not consistent with the latter
scaling laws if they contain an explicit external length scale, the Smagorinsky model
will be investigated. Suppose (57) is substituted for 7 in (A2)-(A5), then S(;x); and
T(x) will read as follows

Suri(®,7) = —CAY(|5|(z)Sik(x)uj(z™)), (A21)
Tigry (=, r) = —CAX uj(z)|S|(2™)5;k(=™M)). (A22)

Here S is computed from (57) while for @ the Reynolds decomposition (A1) is used.

Using (21)-(22) in Eqgs. (A6) leads to a reduced set of possible self-similar solu-
tions. From the above-mentioned four scaling laws, only two allow for self-similarity
so that the number of independent variables reduces by one. These two scaling laws
are the exponential law (A14)-(A18) and the linear law (A20). Both have been
derived under the assumption that there is an external symmetry breaking length



Invariant modeling in LES 21

scale in the flow and no scaling with respect to the coordinates exists. It is straight-
forward to show that the algebraic law (A7) and the logarithmic law (A13) are no
longer self-similar solutions of the system (A6) if (21)-(22) is employed.
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Validation of large-eddy simulation
in a plain asymmetric diffuser

By M. Fatica, H.-J. Kaltenbach' AND R. Mittal®

Motivation

The main motivation for this study comes from the need to validate wall-resolving
LES with the dynamic model in the case of a spatially evolving flow with mild
separation.

With the increase in computing power, more complex flow configurations are
being investigated by means of three-dimensional, unsteady numerical simulation.
The concept of large-eddy simulation (LES), in which resolved and subgrid-scale
motions are defined by a spatial filter applied to the Navier Stokes equations, has
emerged as a promising tool which complements Reynolds averaged Navier Stokes
(RANS) computations. The development of the dynamic SGS-model by Germano
et al.(1991) was a major advance towards a general model which is applicable to an
arbitrary flow and does not need adjustment of model parameters.

An important class of flows which has not been simulated extensively with the
LES technique is the pressure driven separation from a smooth surface. Mildly sep-
arated flows have always been a challenge for experimentalists as well as modelers.

Experimental research on separated flow physics was hindered by the fact that
conventional hot-wire technique is direction insensitive and requires a significant
mean flow component to produce reliable measurements. With the increasing use of
the LDA technique more data sets of separated flows are becoming available which
are suitable for validation purposes. A particularly interesting configuration was
investigated recently by Obi et al. (1993a, 1993b), using a single-component LDA:
a fully developed turbulent flow from a long inlet duct enters a plane, asymmetric
diffuser with an opening angle of 10°. The flow separates about half way down the
deflected wall, and a separation bubble forms which extends into the straight outlet
duct where the flow reattaches.

This flow has several desirable features which make it a good test case for vali-
dation of a computational technique such as large-eddy simulation:

a) The flow belongs to the class of ‘mild’, pressure-driven, separation from a
smooth wall. Many technical devices are designed to operate close to these
conditions since optimum performance is often achieved when the flow is at
the verge of separation.

b) The flow exhibits rich flow physics, such as the combined effect of adverse
pressure gradient and curvature near the diffuser inlet and incipient separation
and reattachment in the outlet duct.

1 Technische Universitaet Berlin
2 University of Florida
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FIGURE 1. Computational domain for the plane diffuser. Only a subset of the
actual grid lines is plotted.

¢) The inflow conditions are unambiguously defined. The inlet duct has a length
of more than 100 duct heights, thereby guaranteeing that the flow entering
the expansion is a fully developed turbulent channel flow. For validating the
computation of a spatially evolving flow, it is crucial to know the upstream
conditions with a high degree of accuracy.

d) The wall-shear based Reynolds number of the incoming channel flow is Re, =
500. Although a direct simulation of channel flow is feasible at this value, a
DNS of the full diffuser is still prohibitively expensive. The Reynolds number is
high enough that the flow does not depend much on this parameter. Obi (1994)
did not find significant changes of flow physics when doubling the Reynolds
number.

During the course of the work, a closer examination of the experimental dataset
from Obi et al. (1993a) revealed some inconsistencies. Basic requirements such
as mass and momentum balance of the 2D mean flow were not met in the rear
part of the expansion (Kaltenbach, 1994). As a result of this, it was felt that an
independent confirmation of the experimental data was highly desirable. Therefore,
a configuration similar to Obi’s rig was built, and great care taken to ensure that the
data set satisfied basic requirements for validation purposes (Buice & Eaton, 1996,
1997). For simplicity we refer from now on to the Obi and the Buice experiment,
respectively.

Flow configuration

The diffuser geometry as shown in Fig. 1 and Reynolds number Rey = Uyé/v =
9000 match the experimental configuration of Obi and Buice. Here, the Reynolds
number is based on the bulk velocity U found in the inlet duct of height h = 26.
The parallel flow from the inlet duct enters the asymmetric diffuser characterized
by an expansion ratio @ = hoy:/hin = 4.7 and by an opening angle of 10 degrees.
The expanding section extends over 426 and is followed by a tail-duct of height
9.46. With the tail-duct extending over approximately 306, the exit plane is located
near /6 = 75. At this location the flow has reattached but is far from being in
equilibrium. In the present study we focus on the separation and reattachment and
not on the recovery into a canonical channel flow, which occurs over a length of tens
of heights of the exit channel.

Simulations were performed on three different meshes and for domain widths of
46 and 86 in the spanwise direction. The mesh is stretched in the streamwise and
wall-normal direction. Details on the numerical method are given in Fatica & Mittal



LES of a plain asymmetric diffuser 25

(1996).

Computationally, this flow is very challenging because of the large range of
timescales encountered. The inertial time scale 7 = 0.5h(z)/Us(z), based on lo-
cal diffuser height h(z) and bulk velocity Us(z), is proportional to the square of the
expansion ratio, i.e. Tout = a®r;p,. At the same time, the computational time step
is limited by the need to resolve the turbulence in the inlet section. The net effect
of the time-scale disparity is that the simulations require very lengthy integration
times.

In this brief, we will compare results from two simulations on a domain with
a spanwise dimension of 86. On the medium mesh (272 x 64 x 96) the inflow
profile has a ratio of centerline to bulk velocity U./Us = 1.12, while on the fine
mesh (352 x 64 x 128) the ratio is equal to 1.14, the same value as reported in the
experiment of Buice. Before sampling statistics, the simulation is run for an initial
period corresponding to approximately one flow-through time in order to flush out
the initial transients. Statistics were then sampled over a period of 1080 7i, or 7
flow-through times for the simulation on the medium mesh. The fine simulation
is not finished yet and only 3 flow-through times were used. Mean quantities are
obtained as averages over both the spanwise direction and time.

Validation of simulation results

The present work aims at exploring the capability of LES for accurate quantitative
prediction. For this purpose we compare simulation results with measurements from
Obi et al. (1993a, 1993b) and Buice & Eaton (1997).

Evaluation of ezperimental data sets

Meaningful comparison between simulation and experiment hinges on the as-
sumption that the same flow is being studied. Ideally, this requires a match in
geometry, inflow and outflow conditions, and Reynolds number. The present state
of high-resolution numerical simulations makes it desirable that the computed flows
be homogeneous in at least one spatial direction. In a spatially evolving flow such
as the diffuser flow, the spanwise direction is considered to be homogeneous. It is
hoped that flow physics will become independent of the chosen spanwise domain
size once the computational box is wide enough. In this direction periodic bound-
ary conditions can be applied, which is advantageous from a numerical point of
view since highly accurate Fourier expansion based methods can be employed. Fur-
thermore, averaging statistics in the homogeneous direction reduces the required
sampling time considerably, and this results in significant savings in terms of CPU
time.

To set up an experiment of a flow which exhibits spanwise homogeneity remains
a challenge. Once the flow separates, the inherent three-dimensionality resulting
from side walls of an experimental facility often increases significantly. By choosing
configurations with wide aspect ratios, it is hoped that effects from unavoidable
secondary flows will be small and will not affect the core region, which should
represent a nominally two-dimensional flow.
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Assessment of suitability of Obi’s data for validation

Obi et al. (1993a,b) investigated flow in an asymmetric diffuser using LDA in
a wind tunnel. They measured pressure along the flat wall, mean velocity, and
Reynolds stresses. The aspect ratio of diffuser inlet and outlet was 1:35 and 1:7.45,
respectively. The inlet channel was slightly wider than the diffuser in order to
prevent thick sidewall boundary layers from entering the expansion. Buice employed
the same technique. In order for the fluid to enter the side slots, the pressure in
the slots has to be slightly lower than the ambient pressure. Buice achieved this
by obstructing the diffuser exit, thereby raising the average pressure level in the
diffuser. Nothing similar is reported for the Obi experiment. Therefore, some
doubt remains about the conditions at the diffuser inlet of Obi’s setup.

Measurement errors for U and Reynolds stresses are estimated to be 0.7% and
2.6% respectively (Maeda et al. 1995). Mean flow profiles are two-dimensional
within 5% of U over 90% of the inlet duct and 60% of the outlet. The mean flow
profile measured 226 upstream of the diffuser throat in the inlet channel is slightly
asymmetric. However, the ratio of centerline to bulk velocity at this location is
1.14, which matches closely the prediction by Dean (1978).

The flow-rate per unit width m = [U(y)dy computed from profiles measured
along the center-plane is plotted in Fig. 2. Up to the end of the expansion near
z/é = 40 the flow-rate is constant within a 2% error band. As the flow leaves the
expansion and enters the outlet section the flow-rate increases rapidly. This might
indicate that significant secondary flow develops in the outlet section. Obi’s data
have been made available on ftp-server (Maeda 1995); there, velocity data were
scaled in a way such that global mass conservation is guaranteed at every station.
We will use the scaled data for comparison with simulation results, keeping in mind
that profiles measured downstream of z/§ = 40 should be only used for qualitative
comparison.

A special remark is required with respect to proper normalization of pressure
measurements which are published in Obi(1993b). There, c, is given with respect to
a reference velocity Uy.s. Since we choose to present all our data with respect to the
bulk velocity of the incoming channel flow, we need to know the ratio Uy, £/ Ubulk-
Obi et al.(1993b) state that the reference velocity corresponds to the centerline
velocity of the inlet duct. However, the mean flow profile measured in the inlet
duct at /6 = —22 reaches a peak of 0.975U,.s (see database of Maeda et al. 1995).
Thus Uyes = 1.025Ucent, and with Ucent/Usuir = 1.14, the conversion of cp given
with respect to Uyes into cp with respect to Upyix involves multiplication with the
square of Uyes/Upuit = 1.168. The use of an incorrect reference velocity in Obi
(1993b) has been corroborated recently.

Assessment of suitability of Buice’s data for validation

The overall dimensions of the experimental facility of Buice (1997) are similar to
Obi’s setup. The novel feature of this experiment is the fact that the pressure level
in the facility was raised through exit blockage, thereby allowing careful control
of sidewall boundary layer leakage through slots immediately ahead of the throat.
Velocity was measured in air with a hot-wire technique, using single and cross wire
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FIGURE 2. Flow rate [U dy/(26U}) from experiments by Obi (¢ ) and Buice (o).
Uy is the bulk velocity of the inlet channel. Error bars mark 3% deviation.

in regions with significant forward flow and pulsed wires elsewhere. The maximum
error in mean velocity is 3%. Flow rates obtained from integration of velocity profiles
measured with single wire upstream of separation and a combination of single and
pulsed wire elsewhere are plotted in Fig. 2. An increase in flow rate in the order of
5% occurs in the region downstream of z/6 = 20, i.e. immediately behind the zone
of maximum pressure rise. Wool tufts mounted to the side walls did not indicate the
presence of secondary flow or sidewall separation. The mass-flow deviation in this
region is slightly greater than the confidence level for the measurements. No check
of spanwise homogeneity at this location is available. Downstream of z/6 = 34 the
mass is globally conserved within 3%, and the flow is uniform in the span within

3%.

Force balance

The integral momentum balance for a fixed control volume for the time- and
spanwise averaged force component F, per unit depth is:

Z F:c = (F out — Fp,in) + F, ,ramp + Ffric + (Fviac,in - Fviac,out) = Min - Mout

The corresponding control volume consists of vertical cuts at z;, = —446 and at a
downstream position Zou: and follows the interior of both walls. With a denoting
the local angle between the deflected and the horizontal wall, the individual forces

read:

top
Fﬂyz = / (p(-’t, y) —Pref)dy, Fp,ramp = /
b H

ot n

out

(P(S) - prcf) sina(s)ds

F out d F /top 1 dUd M topU2 d
ric = Tw COS { 8)as, visc — BT ) = r,
jric = [ rucosals) e vy
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FIGURE 3. Individual terms c/ontributing to the force balance from LES (
Obi (¢ ) and Buice (o ). Momentum flux difference ~AM = —(M;, — M,,.) (lower
curves), residual Fj, net + Frric — AM (middle) and net pressure force Fy ;.. (upper
curves) are normalized by §UZ.

),

Here and in the remainder of the brief we set p = 1. For reference pressure p,.; we
use the pressure at the lower end of the downstream control volume face. Pressure
difference force and ramp force can be combined into a net force Fpnet = Fp out —
Fyin + F; ramp, which expresses the net effect of pressure acting on all control
volume faces. The force Fy ic,w is evaluated for both walls. The momentum flux
M consists of the three parts:

M=/U’dy+/ﬁdy+/?udy

Since the deviatoric SGS-stress 71, is smaller than 2 x 1073U2, it can be neglected
in the force balance for LES data. The isotropic part of the SGS stress enters the
balance through the pressure. We neglect Fy,. since the term scales with 1/Re and
oU |0z < 8U /dy.

Computation of the force balance from experimental data requires some minor
modifications such as inserting additional data points near the walls where measure-
ments are scarce and interpolation of c,-values in z. We assume that the pressure
varies linearly across the duct for the experiment. The c,-difference between wall
and interior resulting from the variance v? is on average -0.005 and has been ne-
glected for the experiments. Computing the force balance from LES results using
this approximation rather than the real pressure distribution leads to a residual in
the order of 0.046U2 in the outlet section. The friction force for the experiments is
computed using ¢y from the LES. Skin friction from the simulation follows closely
the measurements of Buice (Fig. 5), and the overall contribution to the momentum
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balance is less than 5% of the momentum flux difference between two control vol-
ume faces. The overall error introduced by these approximations is assumed to be
in the order of 5%.

Figure 3 depicts individual terms and residual of the force balance for both experi-
ments and simulation. The residual is below 1% of the momentum flux difference for
LES results, thereby validating the internal consistency of the simulation method
and the force balance evaluation. Since friction contributes less than 5% to the
momentum balance, the flux difference AM is mainly balanced by the net effect of
pressure, with Fj, ;amp contributing about one third of the net pressure force.

The maximum residual for Buice’s data set is 0.0276U2, which is below 1.5%
of the incoming momentum flux. This accuracy is remarkable considering the ap-
proximations involved. We found it to be crucial to use raw data, i.e. velocity
measurements which were not scaled to satisfy global mass conservation, in order
to obtain a small residual for Buice’s data. Obi’s data develop a higher residual
which exhibits a trend from negative to positive values with streamwise location
z/6. The positive values of the residual might come from neglecting the pressure
variation across the duct. Another source for the larger force balance residual com-
pared to Buice’s data might be the use of scaled velocity data. Raw data were not
available for Obi's experiment.

Although the primary purpose of the force balance is a check of the consistency
of experimental data, we have included simulation results in Fig. 3. Since LES
and experiment have nearly identical incoming momentum flux, the difference AM
indicates how much outgoing momentum fluxes differ at the downstream control
volume face. LES and Obi’s data agree well whereas M; o4t is slightly higher for
Buice in the region 20 < z/§ < 30. Lower AM in Buice’s data corresponds to
a smaller net pressure force downstream of z/§ = 20 compared to simulation and
Obi. Note that the enhanced momentum flux is consistent with the slight flow-rate
increase in Buice’s experiment near z/§ = 25. Since LES and Obi have similar
cp-curves (see Fig. 5), the net pressure force should be close.

Overall, both experimental data sets satisfy mass and momentum balance of a
nominally two-dimensional flow within acceptable error bounds, which makes them
well suited for validation of a computational study.

Consistency check using Bernoulli’s Equation

As a consequence of conservation of energy, the total pressure ¢, + U? remains
constant along a stream-tube in an inviscid flow. In Fig. 4, this relation has been
evaluated for simulation and experimental data using c, along the upper wall and
the peak value of the streamwise velocity U at a given station. Included are data
from a RANS computation by Durbin (1994).

Figure 4 reveals that the Bernoulli relation holds only approximately in the dif-
fuser with viscous losses accounting for a 30% decrease over the length of the domain.
We find that computations and measurements exhibit about the same total pressure
with the exception of Obi’s data, which fall short by about 5% of the total pressure
upstream of z/6§ = 15. We attribute this deviation to the fact that raw data had
been scaled to satisfy global mass balance.
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FIGURE 4. Depicted are ¢, (lower curves), U,.,, (middle), and total pressure

cp + Uf,mz (upper curves) normalized by U} for LES ( ), Durbin’s RANS
simulation (---- ), and experiments of Obi (¢, & ) and Buice (o, *).

Up to z/6 = 15, LES and Durbin’s RANS simulation predict larger U maz than
the experiments. However, both cases differ with respect to ¢, as early as z/6 = 10.
Here, the limitations of the Bernoulli relation for the present configuration become
evident. Conversely, the deviation in ¢, between LES and Obi on one side and Buice
on the other side is consistent with the larger values of U,,, found near z/6 = 25
in Buice’s data. There, the flow rate was about 5% higher than in the inlet duct.

Although the Bernoulli relation is only an approximation, it helps to interpret
some of the results which will be shown in the following sections. Since the relation
between peak velocity U mq. and pressure is quadratic, a seemingly small mismatch
in mean flow profile by e.g. 3% translates into a cp-difference of 6%. This fact
highlights the enormous difficulty involved in accurate quantitative prediction of
this flow. If through the presence of secondary flow, for example, additional mass
flow is added to a given profile which then accumulates in the region where the
profile is peaked, even small fractions of the total flow rate are sufficient to increase
Umar considerably, thereby changing the pressure coefficient strongly. It is also
evident that error bounds for measurements of Uma; have to be rather small to
make data sets useful for validation purposes.

Comparison of LES with ezperimental data

Using the LES result as a reference, these plots allow comparison of both experi-
ments against each other. From Buice (1997) we use raw data, i.e. data scaled with
Uy measured in the inlet duct. Obi’s data have been scaled in order to satisfy the
global mass balance. One should keep in mind that the uncertainty in the scaling
amounts to 15% downstream of z/6 = 40.
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Comparison of mean flow and pressure recovery

In Figs. 6 and 7 we compare profiles of mean streamwise velocity U, rms of ve-
locity fluctuations, and turbulent shear stress @0 from simulation and experiments.
Results from two simulations obtained on different grids are included in these plots.
For the validation we restrict ourself to the data from the finest mesh.

Overall, the agreement of mean flow profiles between simulation and experiments
is quite good. Upstream of z/6 = 10 the peak velocity U maz of the simulation
is slightly above the experiments. This deviation is within the experimental error
margin. Between z/§ = 25 and z/6 = 35 the situation is reversed, i.e. the experi-
ments exhibit slightly higher peak velocities near the flat wall than the simulation.
Note that Buice’s profiles have not been scaled to conserve mass, which explains
the deviation at z/6 = 25 where the flow-rate was 5% high.

The amount of backflow as well as the location and height of the separation bubble
agree well up to /6 = 55. Reattachment and recovery occur further downstream
in the simulation as compared to the experiment. This translates into a mean
bubble length of 526 in the simulation compared to 476 in Buice’s experiment. Skin
friction along both walls agrees well with Buice’s measurements, see Fig. 5. Near
the diffuser throat the mean flow detaches over a very short distance, indicated by
cs dropping to zero near z/6 = 2 on the deflected wall. There, a very thin zone
of backflow buried in the viscous layer exists that is completely disconnected from
the separation bubble, which begins at z/§ = 13 and extends into the tail-duct.
Using a thermal tuft, Buice determined the location of vanishing wall stress to be
at z/6 = 12. The location of zero crossing in cy is reached at a shallow angle.
Accurate prediction of the exact location of vanishing shear stress is probably less
important than of the overall shape of mean flow profiles and the slope of cg(z).

Most of the pressure increase occurs within the first third of the expansion with
the steepest rise close to z/6 = 2 ( Fig. 5).

Comparison of Reynolds stresses

Measurement errors are higher for fluctuations as compared to the mean flow,
especially at the early stations where measurement volumes are large compared
to the local gradients of rms profiles. Buice’s measurements of u' are flawed near
walls, and the peak rms values are underpredicted by 10-20%. Measurements of
v' are available only for regions where the turbulence level remained below 35%.
Therefore, only partial profiles are shown in the rear part. A few profiles from the
LES upstream of the first measurement stations are shown. The scatter among
the two experiments is larger for rms-values and shear stress than for the mean
flow. Still, the agreement of the two datasets is good, as can be seen at stations
x/6 = 27,34,38 where data from both experiments are available.

Rms profiles from all three velocity components exhibit a characteristic shape
with a double peak. The location of the peak value moves away from the wall into
the flow interior with increasing distance from the diffuser throat. Locations of
peaks of all three rms-values are close to each other and coincide with the locations
of extremal values of uv.
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Profiles of u' from the simulation deviate from measurements upstream of z/§ =
25. In this region the peak values of u' on the side of the deflected wall are higher
by 10-20% than in the experiments. A similar overshoot is observed for —~@v in
the region 10 < z/6 < 25. As mentioned earlier, Buice’s measurements for fluctua-
tions have rather large error margins. Inside the outlet section, deviations between
simulation and measurements become more pronounced near the separation bub-
ble. Near the flat wall, the agreement for u’,v’, and v is reasonable. Obi’s data
are less reliable in this region since the flow is no longer two-dimensional in the
mean. The vertical velocity fluctuation v' deviates from measurements downstream
of /6 = 12. There, the part of the v'-profile between flat wall and duct centerline
is on average 10-20% higher in the LES than in the experiment. Also, U0 seems to
be higher in this profile section.
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FIGURE 6. Comparison of the LES result on fine ( ) and medium (---- )
grid with data from Buice (o) and Obi (¢ ), in the first half of the diffuser: ¢) Mean
velocity U /Us; rms velocity fluctuations: b) u' /Uy, c) v' /Uy, d) w'[Us, €) ao/UL.
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Conclusion from the validation

Although mean flow and c, agree well with the measurements, the agreement
in Reynolds stresses is not as good. Part of this discrepancy might be due to
measurement errors. However, often the deviation of simulation results is outside
the scatter of both experimental data sets. It seems unlikely that both experiments
suffer from a similar systematic error since different measurement techniques (LDA
versus hotwire) were employed.

We find that the simulation captures many essential features of the flow in this
configuration, making it a valuable source for a detailed study of the physical phe-
nomena associated with the separation process. With respect to the ability of LES
to make accurate quantitative prediction of this flow, some uncertainties remain.
Most importantly, it is not clear to what degree the flow in the experiment might
be influenced by the presence of secondary flow. A thorough validation requires
additional detailed measurements.

Future plans

The simulation on the fine grid is still running, and it will be continued until
the statistic are fully converged. In addition, simulations on coarse grids will be
performed with interpolated inflow field used for the fine mesh, to investigate the
minimal resolution necessary for LES.
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Progress in large-eddy simulation of
trailing-edge turbulence and aeroacoustics

By Meng Wang

1. Motivation and objectives

Turbulent boundary layers near the trailing-edge of a lifting surface are known to
generate intense, broadband noise through an aeroacoustic scattering mechanism
(Ffowes Williams & Hall 1970; Howe 1978). In addition, the fluctuating surface
pressure (pseudo-sound) tends to excite structural vibrations and low frequency
noise radiation (Blake 1986).

To numerically predict the trailing-edge noise requires that the noise-generating
eddies over a wide range of length scales be adequately represented. This require-
ment cannot be met by the traditional computational fluid dynamics (CFD) meth-
ods based on Reynolds-averaged Navier-Stokes (RANS) equations or Euler equa-
tions. Large-eddy simulation (LES) techniques provide a promising tool for obtain-
ing the unsteady surface-pressure fields and the near-field turbulence quantities.
LES is best suited for computing the noise source at Reynolds numbers of engi-
neering interest because it resolves only the energy-containing eddies, known to be
significant contributors to noise radiation. The effect of small (subgrid) scale ed-
dies on the large (resolved) scale motion is modeled, thus drastically reducing the
computational cost as compared with direct numerical simulation (DNS). The lat-
ter approach, which attempts to resolve all the physical length scales, is limited to
simple, relatively low Reynolds number flows even with today’s high performance
computing capabilities.

In this project, we aim to develop numerical prediction methods for trailing-
edge aeroacoustics using a combination of LES techniques and aeroacoustic theory
based on Lighthill’s analogy (Lighthill 1952). With this approach, the instantaneous
turbulent flow fields near the trailing-edge are obtained by means of LES. The space-
time evolution of the surface pressure fluctuations, useful as forcing function for
structural vibration models, is also computed directly. The simulation results allow
the acoustic source functions, or the fluctuating Reynolds stress, to be evaluated.
The radiated noise can then be computed from an integral-form solution to the
Lighthill equation, along the line of Ffowcs Williams & Hall (1970). A second
objective of the project is to study the physical mechanisms for the generation of
sound and pseudosound. Besides the edge scattering effect, we are also interested in
the roles played by pressure gradients and boundary-layer separation near a trailing
edge.

The general framework and aeroacoustic formulation for the present project are
outlined by Wang (1996). During the past year major effort has been devoted to
the LES of the near-field, in order to evaluate the acoustic source functions and to
assess the predictive capabilities of LES for surface pressure fluctuations.
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FIGURE 1. Flow configuration and computational domain. The experimental

measurement stations B-G are located at z/h = —4.625, —3.125, —2.125, —1.625,
—1.125, and —0.625, respectively.

2. Accomplishments

2.1 Flow configuration

The flow being simulated corresponds to the experiment conducted by Blake
(1975). As shown in Fig. 1, a two-dimensional flat strut with a circular leading
edge and an asymmetric, beveled trailing-edge of 25-degree tip-angle is placed in a
uniform stream at zero-degree angle of attack. The strut has a chord to thickness
ratio C/h = 21.125. The Reynolds number is based on free-stream velocity Us, and
the chord is 2.15 x 10%. This flow is particularly interesting in that the asymmet-
ric edge shape produces a separated flow on the low-pressure side and an attached
boundary layer on the high-pressure side, thus creating complex shear-layer inter-
actions in the vicinity of the trailing edge. The experimental data, including the
mean and turbulent velocity magnitudes and the fluctuating surface pressure, are
available for comparison with computational results.

2.2 Computational methodology

In order to reduce the computational cost while capturing the essential physical
processes of interest, numerical simulations are conducted in computational domains
that contain the aft section of the strut and the near wake, as illustrated in Fig. 1.
Note that only the location of the inlet boundary is depicted exactly; the remaining
three sides of the domain have been truncated for plotting clarity (see Table 1 for
the actual domain sizes). The letters B, C, D, E, F, and G indicate measure-
ment stations in Blake’s experiment. They are located at z/h = —4.625, —3.125,
—2.125, —1.625, —1.125, and —0.625, respectively, in a Cartesian coordinate system
originating from the trailing edge.

The simulations solve the spatially filtered, unsteady, incompressible Navier-
Stokes equations in conjunction with the dynamic subgrid-scale model (Germano
et al. 1991; Lilly 1992). The numerical code is an adaptation of the C-grid code
described by Choi (1993) and Mittal (1996). Spatial discretization is achieved us-
ing second-order central differences in the streamwise and wall-normal directions
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and using Fourier collocation in the spanwise direction. A significant improvement
has been made by implementing a phase-shift dealiasing strategy in the spanwise
direction (Lund & Wray, private communication). Compared with the original
method of dealiasing by padding, the new method saves 33% CPU time and mem-
ory. The time-advancement is of the fractional step type in combination with the
Crank-Nicolson method for viscous terms and third order Runge-Kutta scheme for
convective terms. The continuity constraint is imposed through a pressure Poisson
equation solved at each Runge-Kutta sub-step using a multi-grid iterative proce-
dure.

The boundary conditions at the inlet are obtained by the following procedure.
First, an auxiliary RANS calculation is conducted in a C-grid domain enclosing the
entire strut. The resulting mean velocities, accounting for the flow acceleration and
circulation associated with a lifting surface, are used as the inflow profiles outside
the boundary layers on both sides of the strut. Within the turbulent boundary
layers the time series of inflow velocities are generated from two separate LES’s of
flat-plate boundary layers with zero pressure gradient, using the method described
by Lund, Wu & Squires (1996). The inflow-generation LES employs an identical
mesh resolution as for the trailing-edge flow LES at the inlet and matches the
local boundary layer properties, including the momentum thickness and Reynolds
number, with those from the RANS simulation.

A no-slip condition is applied on the surface of the strut. The top and bottom
boundaries are placed far away (~ 20h for most simulations) from the strut to
minimize the impact of the imposed velocities obtained from RANS calculations.
At the downstream boundary the convective outflow condition (Pauley, Moin &
Reynolds 1988) is applied to allow the vortical disturbances in the wake to leave
the computational domain smoothly.

2.9 Simulations performed

A total of four simulations, summarized in Table 1, have been carried out to
date, although only the last two will be described in detail. The first simulation
was done on a very coarse grid in the course of code development and testing. More
reasonable grid resolutions were employed in simulations 2 and 3, which differ only in
the spanwise resolution. The resolution improvement in LES 3 results from a switch
to the phase-shift dealiasing method mentioned previously, without increasing the
computational cost. The two simulations (LES 2 and LES 3), however, showed
insignificant differences in the velocity and mean pressure fields.

The newest simulation, LES 4, differs from LES 3 in two major aspects: the
inflow conditions and the spatial resolution. Fig. 2 compares the inlet streamwise
velocity profiles (normalized by free-stream velocity Uso) used in LES 3 and LES 4,
obtained from RANS calculations using the v2-f turbulence model (Durbin 1995)
and Menter’s (1993) SST k-w model, respectively. In this figure the strut is lo-
cated at 0 < y/h < 1, and the two boundary layers are represented by the nearly
horizontal lines. The two turbulence models produced a noticeable difference in
the velocity overshoot (undershoot) outside the upper (lower) boundary layer. The
inflow profiles for LES 4 are associated with a smaller mean circulation, which
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No. Domain Grid Inlet Reg
(I x 1y x 1) (ny X ny X n,) (upper, lower)
1 20.0h x 82h x 0.5h 576 x 80 x 32 3660, 2860
2 16.5h x 41h x 0.5h 1280 x 88 x 32 3660, 2860
3 16.5h x 41k x 0.5k 1280 x 88 x 48 3660, 2860
4 16.5h x 41k x 0.5k 1536 x 96 x 48 3380, 2760

Table 1. Domain size, grid size, and inflow Reg for simulations performed.
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FIGURE 2. Mean streamwise velocity profiles at LES inlets, obtained from RANS
calculations. LES 4; ---- LES 3.

is thought to promote trailing-edge separation (the corresponding RANS solution
indeed has larger separation). The different inflow profiles also correspond to dif-
ferent Reynolds numbers Rey based on momentum thickness and boundary layer
edge velocity U,, as listed in Table 1.

The streamwise resolution improvement in LES 4 occurs mainly along the upper
surface, on which 640 grid points are nonuniformly distributed, compared with
448 points for LES 3. This reduces the maximum grid spacing in wall units at the
location of skin-friction peak (cf. Fig. 7) from Az},,, =~ 105in LES 3 to Az}, ~ 60.
Along the lower surface 512 and 448 points are used in LES 4 and LES 3, with
Az}, . ~ 74 and 62, respectively. In both cases, 192 points are distributed along the
wake line (branch cut). The wall-normal resolution is increased slightly, although
the grid spacing for the first layer of cells adjacent to the surface remains unchanged
at Ayt =~ 2. In the spanwise direction, the same number of points with uniform

spacing are used in both simulations. Az},,, is approximately 55 at the skin friction
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FIGURE 3. Velocity fields computed from LES 4. (a) Instantaneous streamwise
velocity u/Us at a given spanwise cut (contour levels: —0.236 to 1.274, increment
0.116); (b) mean streamwise velocity U/Us (contour levels: —0.081 to 1.207, incre-
ment 0.068).

peak and is substantially smaller elsewhere.

The CPU time requirement to advance the simulation one flow-through time, t.e.,
to follow a fluid element to traverse the streamwise domain length, is approximately
150 single-processor hours on CRAY C90 for LES 3, and 200 hours for LES 4. At
least two to three flow-through times are required to eliminate the initial transients
and collect converged statistics.

2.4 Results

Figure 3a depicts contours of the instantaneous streamwise velocity u/Us at a
given spanwise location. The mean streamwise velocity (U/Us) contours, obtained
by averaging over the homogeneous spanwise direction and time, are plotted in
Fig. 3b. The results of LES 4 are used for both figures. It is observed that the
numerically simulated fields exhibit realistic turbulence structures and a small sep-
arated zone near the trailing edge. The two shear layers, arising from the separated
boundary layer on the upper side and the attached boundary on the lower side,
interact in the near wake region to shed unsteady structures downstream.

In Fig. 4, the magnitude of the mean velocity U = (U? 4+ V?)'/2, normalized
by its value at the boundary-layer edge U., is plotted as a function of vertical
distance from the upper surface at streamwise stations (from left to right) C-G
defined in Fig. 1. The solid and dashed lines are based on LES 4 and LES 3,
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FIGURE 4. Profiles of the normalized mean velocity magnitude as a function of
vertical distance from the upper surface, at streamwise stations (from left to right)
C,D,E F,and G. LES 4; ---- LES 3; e Blake’s experiment. Individual
profiles are separated by a horizontal offset of 1 with the corresponding zero lines
located at 0, 1, ..., 4.

respectively, and the symbols represent Blake’s experimental data. Good agreement
with the experimental results is obtained at station C and all the upstream locations.
However, significant deviations occur at stations D and E, where the experimental
profiles are less full in the near-wall region. Further downstream, at stations F
and G, the discrepancy diminishes, and the computed profiles, particularly those
from LES 4, compare well again with the experimental results. Between the two
simulations, LES 4, which has a smaller mean circulation and better grid resolution,
provides better agreement with the experiment.

Figure 5 compares the computational and experimental profiles of the “turbulence
intensity”, or the normalized rms velocity fluctuations as measured by a single hot-
wire thermal anemometer system, at streamwise stations (from left to right) B, D,
E, F, and G. In terms of the mean and fluctuating velocity components in the z-y
plane, the fluctuating velocity measured by a single wire is approximately

~1 U / V !
u Tu + TU.
(U2 +V2)? (U2 +V2)?

(1)

@' =~ u' in an attached boundary layer where V « U. The agreement between
the LES and the experimental results is fairly good except in the near-wall region
and at the last two stations. One notices that the experimental intensity profiles
consistently miss the near-wall peaks known to exist in turbulent boundary layers,
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FIGURE 5. Profiles of the rms velocity fluctuations defined in (1) as a function of
vertical distance from the upper surface, at streamwise stations (from left to right)
B, D, E, F,and G. LES 4; ---- LES 3; e Blake’s experiment. Individual
profiles are separated by a horizontal offset of 0.15 with the corresponding zero lines
located at 0, 0.15, ..., 0.60.

suggesting a possible lack of spatial resolution or high-frequency response as the
probe approaches the wall. The large discrepancy observed in the separated region
(stations F' and G) may be caused by both simulation and measurement errors.
In general, hot-wire readings become increasingly difficult to interpret if the rms
turbulence intensity exceeds 30% of the local mean velocity (Bradshaw 1971). This
is seen to be the case in the separation bubble where the mean velocity i1s very
small (cf. Fig. 4). It should also be pointed out that the LES results represent the
resolved portion of velocity fluctuations only. No attempt was made to account for
the contributions from the subgrid scale stresses.

The dimensionless mean pressure (= Cp/2) and the local skin-friction coefficient
are depicted in Figs. 6 and 7, respectively, as functions of z. Both simulations
show unsatisfactory comparisons with the experimental C, data, although LES 4
represents a clear improvement over LES 3. The improvement arises from the
smaller circulation and the larger separation zone near the trailing edge. The latter
can be observed from the Cy curves for the upper surface (cf. Fig. 7), where the
solid curve representing LES 4 exhibits a longer portion of negative skin friction.

Comparisons have also been made between the boundary-layer properties pre-
dicted numerically and experimentally. Figures 8 and 9 show the streamwise dis-
tributions of displacement thickness and momentum thickness, respectively. The
experimental values, represented by the solid circles, are given at (from left to right)
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FIGURE 6. Mean wall pressure distribution near the trailing edge. LES ¢4;
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FIGURE 8. Distribution of boundary layer displacement thickness near the trailing
edge. LES 4; ---- LES 3; ¢ Blake’s experiment (from left to right: stations
B-G).
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FIGURE 9. Distribution of boundary layer momentum thickness near the trailing
edge. LES 4; ---~- LES 3; e Blake’s experiment (from left to right: stations
B-G).
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FIGURE 10. Time history of surface pressure fluctuations from LES 4, at stream-
wise stations (from bottom to top) B, C, D, E, F, G, and T.E. (trailing edge), at
a fixed spanwise coordinate. Individual curves are separated by a vertical offset of
0.05 with the corresponding zero lines located at 0.05, 0.10, ..., 0.35.

stations B-G. The displacement thickness predicted by LES is in general agreement
with the experimental data except at station D. The momentum thickness is also
predicted well except at the last two stations. The poor agreement at these stations
1s unexpected, given that the numerical and experimental mean profiles agree well
in Fig. 4.

Temporal variations of wall-pressure fluctuations are exemplified in Fig. 10. The
signals are obtained from LES 4 for stations (from bottom to top) B-G and the
trailing edge, at a fixed spanwise location. At stations B-E the pressure signals
consist of predominantly high frequency fluctuations associated with small scale
eddies in the attached turbulent boundary layer. The oscillation amplitude is de-
creased in the favorable pressure gradient region (station C) and increased in the
adverse pressure gradient region (stations D and E). After the boundary layer is
separated (stations F' and G), the high frequency content is diminished, and the
surface pressure is characterized by lower-frequency and higher-amplitude oscilla-
tions caused by the unsteady separation. The high-frequency content reappears at
the trailing edge, owing to the contribution from the attached turbulent boundary
layer on the lower side.

Figure 11 depicts the wall-pressure frequency spectra

6@ =5 [ <POR ) > ar @

calculated from LES 4 for stations C, E and G. The ensemble average < > is
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FIGURE 11. Frequency spectra of wall pressure fluctuations compared with Blake’s
experimental measurements at selected streamwise stations. The lines are from
LES 4 ( station C; ---- station E; —-— station G), and the symbols are
from Blake’s experiment (e station C; station E; wstation G).

replaced by time- and spanwise averages. Outer variables Uso, 6*, and the dynamic
pressure oo = pU?2 /2 are used to scale the data for comparison with Blake’s ex-
perimental measurements. The calculated spectra agree relatively well with the
experimental data at stations C and E, although they fall off more quickly at
the high frequency end due to limited grid resolution. The high frequency con-
tent corresponds to fine spatial structures not resolved on the simulation grid. In
the separated region (station G), the LES is seen to significantly overpredict the
pressure spectra. The surface pressure frequency-spectra from the coarser grid sim-
ulation LES 3, not shown here, show similar agreement with the experiment in
a somewhat narrower frequency range. It should be mentioned that the pressure
signals plotted here have not completely converged to the statistically stationary
state, as suggested by the slight upward drift of some curves in Fig. 10. As a result,
the pressure spectra, particularly at the low frequency end, will be subject to small
corrections as the simulation continues.

2.5 Discussion and summary

The preliminary LES results described above are encouraging in terms of quan-
titative predictions of the trailing-edge velocity fields and surface pressure fluctua-
tions. However, significant discrepancies still exist between the computed quantities
and those measured experimentally at certain measurement stations. Factors that
may have contributed to these discrepancies include the inflow velocity conditions,
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spatial resolution, and computational domain size. In addition, experimental errors
may have also played a role.

The inflow velocity profiles constitute a major uncertainty for the present LES
since they are not available from Blake’s experiment. The experimental measure-
ments are limited to the upper-side of the strut, and even there the available data,
are insufficient for boundary condition specification. As a result, we had to resort
to RANS calculations to provide the inflow mean velocities, thus severely com-
promising the accuracy of the LES. The inflow profiles are directly related to the
circulation, which affects the entire flow field including the trailing edge region.

Two major simulations, LES 3 and LES 4, with different inflow profiles and
streamwise resolutions were described in this report. The one with smaller mean
circulation and better resolution (LES 4) is shown to generate a larger separated
region and mean velocity profiles in better agreement with the experimental data.
Likewise, the pressure coefficient obtained from LES 4 represents a better approxi-
mation to the experimental data although the pressure rise from the suction peak to
the trailing edge is still exaggerated significantly. Thus, the circulation associated
with the experiment must be smaller than that in either simulation. In principle,
one could estimate the circulation based on the lift or the surface integral of the
static pressure. This is, however, not feasible because no measurement data were
given on the lower surface.

The rms velocity fluctuations from the experiment and both simulations are in
general agreement on the flat strut section and the first two stations on the de-
scending ramp, except in the near-wall region where the experiment fails to record
the peak. The cause for the large disparity at the last two stations needs to be
investigated. Unfortunately, individual components of velocity and Reynolds stress
are not available from the experiment, which impedes a more rigorous validation or
diagnosis of the computational solutions.

The surface pressure frequency spectra reported here are rather preliminary. We
are in the process of validating their statistical convergence as more simulation data
become available.

3. Future plans

First, the near-field LES needs to be further validated and the discrepancies
with the experimental data reconciled. The effect of inflow conditions and the
mean circulation on the edge-flow behavior will be investigated, and more grid
refinement studies are to be carried out. Other possible artifacts that may affect the
computational solutions such as the computational domain size (particularly in the
spanwise direction) should be examined. A careful evaluation of the experimental
accuracy is also necessary.

Once a reliable near-field solution is established, we will conduct detailed studies
of the structure of wall pressure fluctuations and scattering by the edge. Cross-
correlation and spectral analyses will be conducted to investigate the unsteady sur-
face pressure generation and scattering mechanisms. The radiated far-field noise will
be calculated following the acoustic analogy formulation with a hard-wall Green’s
function, as outlined in Wang (1996).
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Resolution requirements in
large-eddy simulations of shear flows

By J. S. Baggett, J. Jiménez' AND A. G. Kravchenko

1. Motivation

Large eddy simulations reproduce faithfully the characteristics of moderately
complex turbulent flows (Moin & Jiménez 1993, Moin 1997). This is true even if
most of them are, at present, based on variations of the Smagorinsky model, which
is known to represent only poorly the subgrid Reynolds stresses (Clark, Ferziger &
Reynolds 1979, Bardina, Ferziger & Reynolds 1983). The subgrid stress tensor can
be decomposed in isotropic and anisotropic components. The former affects the flow
by determining the rate of energy dissipation, but it does not enter directly in the
equations for the mean flow. The average value of the latter determines the mean
shear stresses and controls directly the mean velocity profiles. In the absence of a
mean shear, the rate of energy dissipation fully characterizes isotropic turbulence
(Kolmogorov 1941), and it is believed that the dynamic versions of the Smagorinsky
model (Germano et al. 1991) work by approximating it correctly (Jiménez 1995). It
is, on the other hand, clear that a model which does not well represent the stresses
must do a poor job on shear flows unless the resolution of the filter is chosen fine
enough that the subgrid stresses are negligible.

While it has long been recognized that adequate resolution is crucial for successful
large-eddy simulations, there are few systematic studies that delineate the actual
requirements. That is the subject of this note. The issue may actually be of
secondary importance in free shear flows, although a clear criterion should also
be useful there because it will be shown below that the number of ‘anisotropic’
degrees of freedom in those flows is independent of the Reynolds number. Large-
eddy simulations only have to compute explicitly those anisotropic modes since,
as discussed in the previous paragraph, the isotropic ones are handled well by the
present models. It follows that large-eddy simulations of free shear flows need
only resolve a fixed number of degrees of freedom, depending on the geometry
but independent of Reynolds number, and that an overestimation of the resolution
requirements would at most result in a fixed penalty factor in computer time.

The situation is different for wall-bounded flows, in which the decrease of the
integral scales in the neighborhood of the wall results in a number of anisotropic
modes which increases with Reynolds number. The resolution requirements for
LES depend, as a consequence, also on the Reynolds number and, although not
as large as those of direct simulations, are at present the main limitation for the
simulation of those flows (Chapman 1979). It is therefore important in those cases
to understand the exact requirements and their causes.

1 Also with the School of Aeronautics, U. Politécnica Madrid.
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The present note is organized as follows. In §2 we review the experimental evi-
dence on the anisotropy of the small scales and, in particular, on the dependence of
the subgrid off-diagonal stresses with the size of the filter. This section also includes
information on the equivalent width to be used for this purpose in anisotropic fil-
ters. The predicted stresses are compared in §3 to those obtained by a standard
dynamic Smagorinsky model, and a criterion is established for the resolution needed
to achieve a given error in the mean flow. The number of computational modes re-
quired for large-eddy simulations is estimated from these arguments in §4, and
guidelines are offered for further work.

2. The anisotropy of the subgrid stresses

2.1 Spectral information

Although it is generally accepted that the small scales of turbulent flows are
isotropic, quantitative measurements are rare {see Saddoughi & Veeravalli, 1994,
for a recent experiment and for a review of older results). From the point of view
of LES, what is needed is a characterization of the isotropy of the subgrid Reynolds
stress tensor. Consider the spectral energy tensor ®;;, which is a function of the
wavenumber vector k. If it is normalized so that f ®,; dk = wiu;, the truncated
integral

T.'J‘(k) = '/‘kpk ®,; dk, (2.1)

represents the subgrid stress tensor corresponding to a sharp filter with cut-off k.
For each k it is then possible to define a stress anisotropy tensor,

Aij = — — 26, (2.2)

where repeated indices imply summation, and its L, norm, normalized as
a = (AijAi;/3)'12, (2.3)

measures the anisotropy of the subgrid stresses. It is proportional to the root
mean square deviation of the principal stresses with respect to their mean value,
normalized with the subgrid energy. It reaches a maximum value of a = 0.47 for a
completely uni-axial stress and is zero for an isotropic tensor.

In practice this quantity is seldom available, and the one-dimensional spectral
tensor ©;;(k;), obtained by integrating ®;; over the two remaining wavenumber
components, is used as a surrogate. The subgrid stresses are then estimated by

Tij(k) = /; 0;; dky, (2.4)

which corresponds to applying a one-dimensional sharp filter with cut-off k; = &
along the streamwise direction.



Resolution requirements in LES 53

0.2}
3
0.0 N a g gl N N NP § N N — P
10" 10° 10" 10°

kL,

FIGURE 1. Root-mean square subgrid stress anisotropy as a function of the cut-
off wavenumber for sharp Fourier filtering. Non-equilibrium boundary layer in an
adverse pressure gradient (Marusi¢ & Perry 1995): Re, = 1253, (6*/7y)dP/dz =
7.16. , y/6 = 0.049; ---- , 0.069; ——, 0.095; ------- , 0.168; —--—,
0.328; ———, 0.630. Circular jet from (Bradshaw, Ferris & Johnson 1964): —o—.
UR/v=17x10°,z/R=4,y/R=1

The issues involved in this substitution are discussed by Batchelor (1953) for the
particular case of isotropic turbulence where, within the inertial range, isotropy
implies that ©22 = O33 = %911. In a more general case the substitution cannot
be completely compensated. In the experiments discussed below, it has been taken
approximately into account by premultiplying ©1; by 4/3. Even so, the anisotropy
becomes uncertain as it approaches the value a =~ 0.04, which corresponds to a
tensor whose principal stresses are in the ratio (1, 4/3, 4/ 3).

Two experimental flows are analyzed in this way in Fig. 1: a non-equilibrium
boundary layer in a strong adverse pressure gradient (Marusi¢ & Perry 1995), and
a circular jet (Bradshaw, Ferris & Johnson 1964). Several wall distances are used
in the boundary layer and, in all cases, the streamwise wavenumber is normalized
with the integral dissipation length L, = ¢%/€, where ¢ = Wt;, and € is the energy
dissipation rate. The integral dissipation length is always of the same order as the
integral scales of the flow and is generally much easier to compute. It can be seen
that, although the large scales are fairly different in both flows, they become essen-
tially isotropic for kL, > 50, corresponding to a filter of width Az = 27 /k = L/10.
The exception is the station of the boundary layer very close to the wall, y* = 60,
which either does not reach isotropy or does it very slowly. The microscale Reynolds
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number is comparable in both cases, Rex ~ 150 — 200, even in the neighborhood
of the wall. The differences observed in the behavior of the near-wall spectrum are
probably not due to low Reynolds number effects.

Perhaps more relevant to LES is the total, rather than relative, stress anisotropy.
Figure 2(a) contains subgrid spectra of the total anisotropic stress, 74 = a’rii(k),
while Fig. 2(b) displays spectra of the 712(k), which is the only off-diagonal stress
which does not vanish identically in these experiments. All the spectra have been
normalized to unity at k = 0 and give the fraction of the stresses that would have
to be represented by a subgrid model.

The classical scale similarity theory for the cospectrum predicts ®;5 ~ k~7/3
(Lumley 1967 ), which would translate into 715 ~ k~*/3 for the accumulated subgrid
cospectrum. A line with this slope has been included in both Fig. 2(a) and (b),
but it fits the data only approximately. As in the analysis of the previous figure,
it follows from this one that kL. ~ 100 marks the ‘engineering’ limit of anisotropic
turbulence. The anisotropic subgrid stresses beyond that limit are less than 1% of
the total, and even gross errors in their prediction would have a slight effect on the
mean flow,

2.2 Triazial filters

The analysis in the previous section was restricted to one-dimensional filters by
the experimental information at hand. A full study of the subgrid stresses under
generic triaxial filtering requires knowledge of the full spectral tensor or, equiva-
lently, of the full three-dimensional autocorrelation tensor of the velocities. Both
tensors are related by a Fourier transform. The correlation tensor R,j(x, x') =
(ui(x), uj(x')), where () stands for averaging, is a function of the two points x and
x' and only becomes a function of the relative displacement x — x' along the ho-
mogeneous directions of the flow. In the general case it is a six-dimensional object
that is seldom compiled in experiments or computations.

If a filter is defined as a convolution

= /g(:v, z'Ju(z')dz’, (2.5)

the exact filtered second-order statistics can be obtained from the correlation tensor
by a double filtering operation (Jiménez & Moser 1997),

Ras(z, o) = / / Ru(€, €)9(z, E)a(z', &) dE d€'. (26)

For z = z', we recover the filtered one-point second order statistics Rz3(z, z) =
(¥ 7), and the subgrid stresses can be obtained by subtracting the filtered from the
unfiltered values, Ty, = Ruy — Rgy. Besides being applicable to inhomogeneous
flows, this procedure has the advantage of requiring only the small-separation cor-
relation tensors (over separation distances less than or equal to the longest desired
filter length), thus relaxing somewhat the storage and computational requirements
of dealing with such high-dimensional objects.
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FIGURE 2. Subgrid stress spectra for the experiments in Fig. 1. (a) Total
anisotropic stress. (b) Off-diagonal component, 712. Symbols as in Fig. 1. The
two dotted straight lines have spectral slope k=4/3, as suggested by the inertial

theory for the cospectrum.
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A compilation of data intended for the validation of LES has recently become
available (AGARD 1998), and contains correlation data for several flows. The
boundary layer spectra used in the previous section also belong to this collection.
Here we use data from a Re, = 590 channel computed by Mansour, Moser & Kim
(1997) to obtain scaling information for the subgrid stresses under anisotropic filters.
The data are compiled at seven locations in the channel, y* = 60 — 500, and two
types of filters are used: a simple box filter

g = (616263)7", for |z; —z}| < /2, t=1...3, (2.7)

which vanishes for |z; — z}| > 6;/2, and a Gaussian one adjusted so that its variance
is the same as that of the box filter in each direction. Each of the §; are varied
independently in the range from zero (actually the computational grid spacing of
a few wall units) to 6; ~ 0.14H, where H is the half-width of the channel. This
generates approximately 700 filter combinations at each location, and the fractional
subgrid stresses 7;;/(uiu;} are compiled in each case.

The equivalent width to be used for anisotropic filters was first considered by
Deardorff (1970) and has been discussed since then by Schuman (1975), Lilly (1988),
and Scotti, Meneveau & Fatica (1996). A popular choice is A = (6;6263)'/2, which
was first proposed by Deardorff and which can be approximately justified by consid-
ering the integrated dissipation in a Kolmogorov spectrum outside the wavenumber
ellipsoid that represents the filter. That scale is, however, not necessarily relevant
for the prediction of the subgrid stresses since their spectral tensor is very different
from that of the dissipation, and the dominant contributions to the former are due
to the anisotropic large scales rather than to the isotropic ones which dominate the
latter. In fact, the subgrid stresses from the different filters collapse very poorly
when plotted against isotropic combinations of the widths, as seen in Figs. 3A(a)-
3B(a). Note that, although we have used in those figures a quadratic combination,
the performance of the Deardorff criterion is actually poorer.

It turns out that the optimum collapse of each subgrid stress is obtained for a
different combination of §’s. By adjusting the coefficients of the squares to obtain
a minimum scatter we find, for example, that the best equivalent width for 7y is
(Fig. 3A(b))

Apy = (6% + 262 + 263)1/2, (2.8)

This is easily understood by assuming that turbulence is approximately isotropic,
even in this shear flow. For small separations we can approximate the correlation

function by ’ \
Rll/(u,u1)=1—z%+x')+..., (2.9)
11,3

and it follows from isotropy that the longitudinal and transverse Taylor microscales
are related by (Batchelor 1953)

’\31,1 = 2’\:12x,2 = 2"?1,3- (2-10)
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FIGURE 3A. Subgrid stresses in a channel flow (Mansour, Moser & Kim 1997)
using triaxial filters: 71; component. + , box filter. Figure (a) uses A = (82 +62+63)
in the abscissa. Figure (b) uses A;; given by (2.8). Re, = 590, y* = 300.
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FIGURE 3B.  Subgrid stresses in a channel flow (Mansour, Moser & Kim 1997)
using triaxial filters: 712 component. + , box filter; o , Gaussian. Figure (a) uses

A = (6} + 63 + 63) in the abscissa. Figure (b) uses A;z given by (2.13). Re, = 590,

y* = 300.
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If we remember that the filtered stresses are essentially the integral of (2.9) within
a box defined by the filter, it is reasonable to expect that the relevant scale combi-
nation should weigh the different widths with the curvatures of the function along
each axis. This, together with (2.10), leads to (2.8). Applying the same argument
to Ry, and R33 suggests that the right combinations for 722 and 733 should be

Agg = (262 + 82 + 261)1/2, 2.11
1 2 2

Ass = (262 + 262 + 62)!/2. 2.12
1

Although they are not shown in the figure, these predictions turn out to be correct.

The isotropic theory does not give information on the scaling of the off-diagonal
stresses, which vanish identically in that case. The empirical optimum combination
for the present channel is very close to (Fig. 3B(b))

Az = (62 + 62 + 461)'/, 2.13
2

which is simple enough to suggest that a theoretical explanation should exist, prob-
ably as a perturbation of the isotropic theory including weak shear. Also in this
case it is easy to check that the scaling factors correspond to the curvatures of the
correlation function in the neighborhood of the origin. It is clear, on the other hand,
that these scalings can only be approximations, valid for a particular range of filter
scales which are comparable to the Taylor microscale. Much wider filters act on
regions of the correlation functions which are not well described by the parabolic
approximation (2.9), and they should not scale well with the Taylor microscales.
Also, other flows are intrinsically anisotropic, and the isotropic approximation that
holds here would not apply to them. Some preliminary tests on homogeneous shear
flows (Rogers & Moin 1987, Sarkar 1995) suggest that, although simple quadratic
combinations also work well for them, they are different from the ones above. Note
that the results of the Gaussian filters have been included in Fig. 3B(b), and that
they approximately agree with those of the box filters.

The use of the integral dissipation length to scale the equivalent filters works well
here as it did for the spectra in the previous section. In Fig. 4 we have compiled
data from several locations in the channel, among which the integral dissipation
length varies by up to a factor of two and the collapse of 712 is maintained.

3. Simulations

To compare the subgrid stresses predicted above with those actually provided
by standard LES models, we undertook a set of simulations of a plane channel
at Re, ~ 1,000. They use a multiblock code which allows a high resolution to
be maintained near the walls while varying the grid in the center of the channel.
This avoids the issues of the representation of the flow near the wall, which are
known to be important, while permitting a systematic survey of the effect of the
resolution in the central part of the flow. The code itself and its performance across
block boundaries are described by Kravchenko, Moin & Moser (1996). It uses a
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double Fourier expansion in the periodic streamwise and spanwise directions, and
second-order splines normal to the wall. Three computations are analyzed here, all
of them using a box of size 27 x 2 x 7/2. The spanwise dimension is narrow for an
accurate representation of the central core region, but it should be wide enough for
the logarithmic range below y* = 500. The three simulations are comparable to
each other except for the resolution. They all use standard dynamic Smagorinsky
subgrid modeling with the proportionality constant averaged over planes parallel to
the walls.

The first simulation uses a single-block grid 48 x 64 x 48 in the streamwise,
normal, and spanwise dimensions. It was checked against a previous simulation
on a somewhat larger box (27 x 2 x ) at higher resolution, 96 x 100 x 96, and
it is considered to be approximately correct. The two other simulations use the
same grid near the walls (48 x 21 x 48), but the horizontal resolution is decreased
in a central block, which contains 22 points for the region above y* =~ 250. The
horizontal grids in this region are 24 x 24, and 16 x 16. The horizontal resolution
of the finer grid is Azt x Az* = 130 x 30 and becomes respectively two and three
times coarser for the other two grids. The wall-normal resolution is identical in all
cases and varies from Ayt & 0.5 near the wall to Ay* ~ 100 at the center of the
channel.

In each case the fraction of the mean subgrid shear stress 715 due to the model
was recorded as a function of y. It is given in Fig. 4 in terms of a reduced ‘filter’ size
computed from the local grid spacing using (2.13) and normalized with the local
integral dissipation length. Only points in the central block and at least two grid
points away from the zonal boundaries are used. Included for comparison are the
subgrid fractions of the same quantity obtained in the previous section (Fig. 3d) by
explicit filtering of the direct channel simulation.

It is remarkable that both sets of data collapse reasonably well within themselves,
taking into account that they represent filters of widely varying aspect ratios at
locations in the channel that span from the inner logarithmic region to the central
core. They do not, however, agree with each other. The measured subgrid stresses
are consistently below those predicted by explicit filtering, by a factor of about 3-4.

Note that the two sets are not strictly comparable since the filtering results are
plotted against a known filter width, while the filter width in the simulation is
assumed proportional to the grid size with the grid acting as an unknown implicit
filter. They should therefore not be expected to agree exactly with each other,
but the disagreement is in the wrong direction. Even if the effect of the grid is
not well understood, it is clear that it cannot represent features smaller than the
grid spacing. This implies that the stresses in the subgrid eddies should correspond
to filters at least as wide as the grid, and probably wider, while the only way to
collapse the two sets of data in the figure would be to assume that the grid is acting
as a filter three times narrower than itself. The only possible conclusion is that the
subgrid model is providing at most about 20~30% of the shear stress that it should,
in rough agreement with the results obtained by Bardina et al. (1983) from a-priori
testing of the Smagorinsky model.



Resolution requirements in LES 61

107 10"
A12/1"&:

FIGURE 4. Fraction of the subgrid shear stress carried by the dynamic Smagorinsky
model, compared with what should be carried at a comparable filtering size. LES
simulations of channel at Re, = 1000, yt > 300. Resolution in central block: o,
16 x 16; & , 24 x 24; v : 48 x 48. Resolution near the wall is always 48 x 48.
+ , subgrid 732 obtained by explicit box filtering on a channel at Re, = 590, as in
Fig. 3. y* > 90.

It follows that, if the shear stress is underrepresented by the model, the velocity
profile should adjust itself until the total stress is that of an equilibrium channel,
which varies linearly between the two walls. The errors in the mean velocity profile
should then become worse as the resolution is made coarser, making the model
responsible for a larger fraction of the total stresses. This can be seen to be true
in Fig. 5, which shows the Karmén constant computed from each simulation. It
agrees reasonably well with the accepted experimental value x =~ 0.4, in the finer
grid, where the subgrid stress should be in the range of 5-8% (Fig. 4). Even if in
this case the modeled stresses are only about 1%, the total error is 5%, and the
effect on the mean flow is slight. In the coarser simulation, it follows from the figure
that the subgrid stresses should be of the order of 20%, while those provided by the
model are only about 5%. The resulting 15% error translates into an error of the
same order of magnitude in the Karman constant and in the mean profile.

4. Discussion and conclusions

4.1 Degrees of freedom

The analysis in the previous sections suggests that accurate subgrid models for
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FIGURE 5. Karmaén constant, x = (y0U*/3y)~!, computed from the large-eddy
simulations in Fig. 4. Resolution in central block: , 16 X 16; -—-~ | 24 x 24,
—-— , 48 x 48, -------- , single-block computation on a 96 x 100 x 96 grid, in a larger
box, 27 x 2 x 7; included for comparison.

the Reynolds stresses, which are large-scale properties of the flow, may not be
strictly necessary in all practical LES. They can be avoided by refining the LES
filter until the fraction of the stresses to be modeled becomes negligible, and this
happens at a fixed fraction of the integral dissipation length, Az = L, /10. Besides
the evidence from the experiments analyzed above, this is a consequence of the
form of the spectra of the subgrid stresses, which decay approximately as k~2/3
for the isotropic components and as k~4/3 for the anisotropic ones. The integral
scale is defined by the peak of the energy spectrum, and the decay of the stresses is
therefore measured with respect to it. In the cases in which turbulence is driven by
large-scale shear, the energy-containing eddies are controlled by the geometry, and
the previous argument shows that modeling the stresses correctly requires filters
which are a fixed fraction of the geometric scale. This implies that, for situations
in which L, is approximately uniform, as in free shear flows, only a few thousand
degrees of freedom need to be computed explicitly, independently of the Reynolds
number. All the stresses are contained essentially in them.

Note that the last part of this argument may not be valid if the turbulent forcing
is due to factors other than the geometry, in which case the integral scales can be
smaller than the geometric ones and may depend on the Reynolds number. Such
may be the case, for example, in two phase flows and in turbulent natural convection.

The situation is different for the rate of energy dissipation, which is associated
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with eddies of the order of the Kolmogorov scale n ~ L.Re~3/* and which has to be
estimated correctly to avoid the accumulation of energy in the small scales (Jiménez
1993, 1995). In the absence of good subgrid models for the dissipation, this would
require the computation of all the eddies down to the level of n and would lead to
the well known estimate of the number of degrees of freedom in direct simulations,
N7 ~ Re®/*. What the previous analysis suggests is that modeling the dissipation
and the stresses are different tasks, with different requirements, and could possibly
be handled by different models. It also shows that, while modeling the former is
an absolute requirement for practical simulations, modeling the latter may not be
crucial.

The previous arguments do not apply in the neighborhood of a wall. While the
data discussed above shows that the anisotropic modes are confined to eddies larger
than a given fraction of the integral scales even in the logarithmic wall layer, the
integral scales decrease as we approach the wall. Consider a fluid volume whose
size L3, is determined by the geometric scales, such as the channel half-width. In
the neighborhood of the wall the integral length decreases linearly as L, ~ y, and
the eddies remain anisotropic above Az ~ y. The number of anisotropic modes in
a slab of thickness dy is then dN ~ L% dy/Az?, and their total number is given
by the integral -

N~ [ Lhduy® ~ Diofo}, (41)
Yo
where yo is some inner wall distance that determines the number of modes. If, in
the absence of a good model for anisotropic turbulence, we choose this limit as a
fixed number of viscous wall units, yo = vys /ur, the number of anisotropic modes
becomes

N7 ~ (urLeo/v)? = ReZ, (4.2)

which is only slightly lower than the estimation for direct numerical simulation and
which increases without limit with the Reynolds number. Note that this estimation
is not linked to a particular numerical model, being just a count of the number of
‘non-Kolmogorov’ modes per unit volume of wall turbulence. These modes depend
on more parameters than the rate of energy dissipation, and they are unlikely to be
modeled correctly by isotropic approximations of the Smagorinsky type.

Note also that improving the subgrid models so that they represent a higher
fraction of the stresses, so that the filter can be chosen as a higher fraction of
the integral scale, would only modify the numerical coefficient in (4.2), but not its
Reynolds number dependence. The only alternatives to decrease substantially the
explicitly computed number of modes would be to improve the subgrid models to
represent correctly all the Reynolds stresses, even above the integral scale, or to
stop the computation at some distance yo from the wall, expressed in outer, rather
than wall, units.

4.2 Conclusions and future work

We have shown that the anisotropic subgrid stresses are confined in practice to
eddies larger than about one tenth of the local integral dissipation scale, and we have
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given criteria to compute the equivalent width, for this purpose, of triaxial filters
in weakly sheared, quasi-equilibrium, flows. We have also shown that Smagorinsky-
type dynamic subgrid models, while representing the energy dissipation correctly,
are not able to reproduce the stresses. They only work if the filter widths are chosen
so that the subgrid stresses to be modeled are a negligible fraction of the total. The
errors due to the model then become unimportant.

For free shear flows this results in a number of degrees of freedom that have to be
computed explicitly, which is independent of the Reynolds number, of the order of a
few thousands. This would make LES a practical alternative in many applications.

For wall bounded flows the same criterion results in a number of anisotropic,
‘non-Kolmogorov’, modes which scales like Re?, most of which are concentrated
near the wall. To avoid this Reynolds number dependence, the two alternatives are
either to develop better models which are able to describe correctly the full shear
stresses, or to find wall representations which can be applied at distances which do
not scale in wall units.

Some preliminary tests of mixed Bardina-type models (Vreman, Geurts & Kuerten
1994) disappointingly gave worse results than the Dynamic Smagorinsky model at
comparable resolutions, but more work is needed before that line is abandoned.
The conclusions of the present work also need to be extended to more general non-
equilibrium flows.
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A general theory of discrete filtering
for LES in complex geometry

By Oleg V. Vasilyev AND Thomas S. Lund

1. Motivation and objectives

In large eddy simulation (LES) of turbulent flows, the dynamics of the large scale
structures are computed while the effect of the small scale turbulence is modeled
using a subgrid scale model. The differential equations describing the space-time
evolution of the large scale structures are obtained from the Navier-Stokes equations
by applying a low-pass filter. In order for the resulting LES equations to have
the same structure as the Navier-Stokes equations, the differentiation and filtering
operations must commute. In inhomogeneous turbulent flows, the minimum size of
eddies that need to be resolved is different in different regions of the flow. Thus
the filtering operation should be performed with a variable filter width. In general,
filtering and differentiation do not commute when the filter width is non-uniform
in space.

The problem of non-commutation of differentiation and filtering with non-uniform
flter widths was studied by Ghosal and Moin (1995), who proposed a new class of
filters for which the commutation error could be obtained in closed form. The
application of this filter to the Navier-Stokes equations introduces additional terms
(due to commutation error) which are of second order in the filter width. Ghosal and
Moin suggested that the leading correction term be retained if high order numerical
schemes are used to discretize the LES equations. This procedure involves additional
numerical complexities which can be avoided by using the filters described in this
report. Van der Ven (1995) constructed a family of filters which commute with
differentiation up to any given order in the filter width; however, this approach is
limited to a specific choice of filters and does not address the issue of additional
boundary terms that would arise in finite domains.

Due to the lack of a straightforward and robust filtering procedure for inhomo-
geneous flows, most large eddy simulations performed to date have not made use of
explicit filters. The nearly universal approach for LES in complex geometries is to
argue that the finite support of the computational mesh together with the low-pass
characteristics of the discrete differencing operators effectively act as a filter. This
procedure will be referred to as implicit filtering since an explicit filtering operation
never appears in the solution procedure. Although the technique of implicit filter-
ing has been used extensively in the past, there are several compelling reasons to
adopt a more systematic approach. Foremost of these is the issue of consistency.
While it is true that discrete derivative operators have a low-pass filtering effect,
the associated filter acts only in the one spatial direction in which the derivative s
taken. This fact implies that each term in the Navier-Stokes equations is acted on
by a distinct one-dimensional filter, and thus there is no way to derive the discrete
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equations through the application of a single three-dimensional filter. Considering
this ambiguity in the definition of the filter, it is nearly impossible to make detailed
comparisons of LES results with filtered experimental data. In the same vein it
is not possible to calculate the Leonard term (Leonard, 1974) that appears as a
computable portion in the decomposition of the subgrid-scale stress.

The second significant limitation of the implicit filtering approach is the inability
to control numerical error. Without an explicit filter, there is no direct control in
the energy in the high frequency portion of the spectrum. Significant energy in this
portion of the spectrum coupled with the non-linearities in the Navier-Stokes equa-
tions can produce significant aliasing error. Furthermore, all discrete derivative
operators become rather inaccurate for high frequency solution components, and
this error interferes with the dynamics of the small scale eddies. This error can be
particularly harmful (Lund and Kaltenbach, 1995) when the dynamic model (Ger-
mano et al., 1991; Ghosal et al., 1995) is used since it relies entirely on information
contained in the smallest resolved scales. In addition, it is difficult to define the
test to primary filter ratio which is needed as an input to the dynamic procedure.

The difficulties associated with the implicit filtering approach can be alleviated
by performing an explicit filtering operation as a part of the solution process. By
damping the energy in the high frequency portion of the spectrum, it is possible
to reduce or eliminate the various sources of numerical error that dominate this
frequency range. Explicit filtering reduces the effective resolution of the simulation
but allows the filter size to be chosen independently of the mesh spacing. Further-
more, the various sources of numerical error that would otherwise enter the stresses
sampled in the dynamic model can be controlled, which can ultimately result in
more accurate estimate for the subgrid scale model coefficient. Finally, the shape
of the filter is known exactly, which facilitates comparison with experimental data
and the ability to compute the Leonard term.

To realize the benefits of an explicit filter, it is necessary to develop robust and
straightforward discrete filtering operators that commute with numerical differen-
tiation. As mentioned above, the earlier works in this area required either adding
corrective terms to the filtered Navier-Stokes equations or required the use of a re-
stricted class of filters that could not account properly for non-periodic boundaries.
The objective of this work is to develop a general theory of discrete filtering in
arbitrary complex geometry and to supply a set of rules for constructing discrete
filters that commute with differentiation to the desired order.

This report summarizes the essential results; the details of mathematical deriva-
tions and proofs are described by Vasilyev et al. (1997), hereafter denoted by VLM.

2. Accomplishments

2.1 Commutation error of filtering and differentiation operations

Consider a one-dimensional field ¢(z) defined in a finite or infinite domain [a, b].
Let f(z) be a monotonic differentiable function which defines the mapping from
the domain [a, b] into the domain [a, ), i.e. £ = f(z). f(z) can be associated with
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mapping of the non-uniform computational grid in the domain [a, b} to a uniform
grid of spacing A, where the non-uniform grid spacing is given by h(z) = A/ f (z).

Let z = F(£) be the inverse mapping (F(f(z)) = z). The filtering operation is
defined in an analogous way as in (Ghosal and Moin, 1995). Given an arbitrary
function ¥(z), we obtain the new function #(€) = (F(£)) defined on the interval
[, B]. The function ¢(£) is then filtered using the following definition:

- A -
56 =% [ 6(55L¢) stnn )

where G is a filter function, which can have different shapes in various regions of the
domain. This definition is more general then the one commonly used in the LES
literature and, as will be shown later, is crucial for elimination of boundary terms
in the commutation error. The introduction of filters of different shapes in different
parts of the domain is necessitated by considering inhomogeneous (non-periodic)
fields. If we assume that the function ¢(¢) is homogeneous (periodic) in [a, ], then
a periodic filter can have the same shape throughout the domain.
The filtering operation in physical space can be written as

b — ’
7o) =+ [0 (1Y, o)) wirs iy @

Note that definitions (1) and (2) are equivalent. However, the filtering operation
(1) in the mapped space is much easier to analyze and implement than (2), and we
will use it throughout unless stated otherwise.

Let us consider first the commutation error of filtering and derivative operations
in one spatial dimension. We define an operator that measures commutation error

by

dy) _dy  dy
[;;;} =% T dr ®)
Introducing the change of variables n = £ — A(, Eq. (1) can be rewritten as
_ =
56)= [ 60U -A0K @

Performing the formal Taylor series expansion of ¢(¢ — A(¢) in powers of A and
changing the order of summation and integration, we obtain

< R (=D kagk k
9(6) =D 7 AMHOD(O), (5)
k=0 '

where Df = g;; is the derivative operator and M*(€) is the k-th filter moment

defined by
;;e'

M(€) = /%sE CHG(¢, £)dC. (6)
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The series (5) may have either infinite or finite radius of convergence depending
on the filter moments. For the discrete filters, as shown in VLM, the radius of
convergence of the series is infinity.

Substituting (5) into (3) and skipping the algebra we obtain

+oo +o00 k
[j—‘”] = Y A ©at + Y B a%, (M)
T k=1 k=0 'S

where Ax (k > 1) and B (k > 0) are, in general, nonzero coefficients. Thus,
the commutation error is determined by the filter moments, M* (§), and mapping
function, F'(€).

In this report we consider a general class of filters which satisfy the following
properties:

M°(£) = 1for £ € [a, B); (8a)
M*(¢)=0fork=1,...,n~1and £ € [a, B]; (8b)
M*(€) exist for k > n. (8c)

There are many examples of filters which satisfy these properties when the function
¢(£) is defined in the domain (—o00,+00). One is the exponentially decaying filter
defined in (Van der Ven, 1995). Another example is the correlation function of
the Daubechies scaling function used in multi-resolution analysis for constructing
orthonormal wavelet bases (Beylkin, 1995; Beylkin and Saito, 1993). Examples of
such filters with 5, 9, and 17 vanishing moments and the corresponding Fourier
transforms, G(k) = fj—:: G(&) exp(—ik€)dE, are shown in Fig. 1.

We also note that the definition (8) does not require that the filter kernel be
symmetric. This allows us to use a wider class of filters than in (Ghosal and Moin,
1995; Van der Ven, 1995). We do not present continuous filters on an interval, which
satisfy definitions (8a-8c), since as it will be shown later, for practical purposes we
need discrete filters. For now we only assume that such filters exist and that they
can be constructed.

Using properties (8a) and (8b) it follows that

oM*
3¢ (¢)=0 for 0,...,n (9)
Consequently, the commutation error (7) is
dy n
[E] = 0(A"). (10)

It is easy to show that in the homogeneous (periodic) case, when the shape of the
filter does not depend on the location, and the mapping from the physical to the
computational domain is linear, Ay is exactly zero for any & and the filter moments
are not functions of the location. This results in zero commutation error.
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G(£)

0 0.26 0.50 0.75 1.00

k/2n

FIGURE 1. Filters G(¢), (a), with 5 ( ), 9 (----), and 17 (—-—) vanishing
moments and corresponding Fourier transforms G(k), (b).

The non-uniform filtering operation in one spatial dimension can be extended
easily to three spatial dimensions (see VLM). As in the one-dimensional case this
transformation can be associated with the mapping of spatially non-uniform com-
putational grid to a uniform grid with spacings Ay, Az, Aj in the corresponding
directions. If one performs the same type of analysis as in one-dimensional case, it
is easy to show (see VLM) that the commutation error in three spatial dimensions
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is given by

2| = oar, a2, )

Thus, the commutation error of differentiation and filtering operation is no more
than the error introduced by an n-th order finite difference scheme, provided that
the filter has n — 1 zero moments.

2.2 Discrete filtering in complez geometry

In large eddy simulation of turbulent flows, the solution is available only on a set
of discrete grid points, and thus discrete filters are required in various operations.
The machinery developed in Section 2.1 can be adapted to discrete filtering. In this
section we will limit ourselves to consideration of discrete one-dimensional filtering,
since three dimensional filtering can be considered as an application of a sequence
of three one-dimensional filters. Also, since the filtering operation is performed in
the mapped space, we will consider only the case of uniformly sampled data.

2.2.1 Construction of discrete filters

Let us consider a one-dimensional field ¢(£) defined in the domain [a, 8). {¢;}
corresponds to values of ¢(¢;) at locations & = a4+ Aj (j =0, ..., N), where A is
the sampling interval. A one-dimensional filter is defined by

Lj

—i—G <£jA— n,{j) = ) wib(n—€4), (12)

I=—Kj

where §(£) is the Dirac é-function and w] are weight factors. We consider the general
class of non-symmetric filters for which K; # L;. One of the important aspects of
discrete filters is that all filter moments exist and the radii of convergence of Taylor
series (5) and other related series are infinite. Substitution of (12) into (1) gives the
following definition for a discrete filter

Lj

$; = Z W] i1 (13)

I=—Kj

It is the property (12) which allows us to apply results of Section 2.1 to discrete
filters.

In light of the filter definition (8), the weight factors should satisfy the following
properties

L;j .

Z w] =1, (14a)
I=-K;

L; ]

Y Imwl=0, m=1,..n-1 (14b)

l=—Kj
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Equations (14) give us n constraints on w] and are solvable if and only if L; +
Ki+1>2n IfL;j+K;+1>n then additional constraints can be applied.

Conditions (14) give the minimum number of degrees of freedoms for a discrete
Slter in order for the derivative and filtering operations to commute to order n.
This condition gives the minimum filter support, which can be increased by adding
additional constraints. The additional linear or nonlinear constraints can be altered
depending on the desired shape of the Fourier transform G(k) associated with the
filter (12) given by

L;
Gey= 3 wieTH. (15)
I=—K;
number of
case |vanishing |W_3 W_2 W_1 Wg W1 W2 W3 Wq Ws
moments
1] 1 A
2| 2 bt
3| 2 EER
41 3 Bi-1i-%
51 3 6 18 "ie
6| 3 -% § 3 i1
T| 4 R R R i
8| 4 % 55 16 16 31 "33
0] 5 |x-wRBE-SA

TaBLE 1. The values of the weight factors and the number of vanishing moments
for different minimally constrained discrete filters.

A desirable constraint on a filter is that its Fourier transform be zero at the cut-
off frequency, i.e. G(7/A) = 0. The mathematical equivalent of this requirement
is given by

Lj
Y (-Diwi=o0. (16)
l=—K;

Condition (14) and (16) represent the minimum number of constraints which should
be imposed on the filter. Examples of weights for minimally constrained discrete
filters are given in Table 1 and associated Fourier transforms for some of these filters
are presented in Figs. 2-4. Examples of the Fourier transforms of minimally con-
strained symmetric filters with one, three, and five vanishing moments are presented
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FIGURE 2. Fourier transform é(k) of the symmetric minimally constrained dis-
crete filters with one (~---), three (—-—), and five ( ) vanishing moments
corresponding respectively to cases 1, 6, and 10 given in Table I.

in Fig. 2. These filters correspond respectively to cases 1, 6, and 10 presented in
Table 1. We see that increasing the number of vanishing moments yields a better
approximation to the sharp cutoff filter, which is more appealing from a physical
point of view. It also can be observed that filters shown in Fig. 2 have different
effective cut-off frequencies. Thus, in order to control the effective cut-off frequency,
additional constraints should be introduced. The Fourier transform of asymmetric
filters with four vanishing moments corresponding to cases 8 and 9 presented in Ta-
ble 1 are shown in Figs. 3 and 4 correspondingly. Note that the asymmetric filters
introduce phase shifts due to their non-zero imaginary parts. The imaginary part
should be minimized by introducing additional constraints. Also notice the over-
shoot in the real part and absolute value of the filter shown in Fig. 3. In general,
an overshoot is not desirable since it may lead to non-physical growth of energy.
Additional constraints are necessary in order to reduce or remove overshoot.

In the interior of the domain, in order to eliminate the phase shift, the filter
should be symmetric, i.e. the following relation should be satisfied

w{:w{_,, l=1,...,L, (17a)
Li=K;=1L. (17b)

In this case the filter only adjusts the amplitude of a given wavenumber component
of the solution and leaves its phase unchanged. Near the boundaries, however,
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FIGURE 3. Real R{G(k)} (—-—), imaginary ${G(k)} (----), and absolute value

lé(k)‘ ( ) of Fourier transform G(k) of the asymmetric discrete filter with four
vanishing moments corresponding to case 8 given in Table L
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FIGURE 4. Real R{G(k)} (——), imaginary ¥{G(k)} (----), and absolute value
|é(k)‘ ( ) of Fourier transform G(k) of the asymmetric discrete filter with four

vanishing moments corresponding to case 9 given in Table L.
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number of
case |vanishing additional constraints Wo W41 W42 W43 Wig Wis
moments
1| 3 | GArn/3)=1/2 1157 3456 158 ~T30T ~ebis ~em
G™(Ar)=0,m=0,...,5
2 3 | Gan/2)=1/2 P =% 0 %
G™(AT)=0,m=0,...,1
3 3 G(2An/3)=1/2 % % —% 1;4

G (AT)=0,m=0,...,1

TABLE 2. The values of the weight factors and the number of vanishing moments
for different linearly constrained discrete filters.

it may be necessary to make the filter asymmetric. In this case a phase shift is
introduced and one is interested in minimizing this effect.

Examples shown in Figs. 2-4 demonstrate the necessity of the introduction of
additional constraints which ensure that the resulting filter has all the desired prop-
erties. One way to constrain the filter is to specify either its value or the value of
its derivative for a given frequency k,. Examples of weights for filters with three
vanishing moments and different linear constraints are given in Table 2 and as-
sociated Fourier transforms for these filters are presented in Fig. 5. These filters
are constrained in such a way that the effective filter widths are 3A, 2A, and 3/2A
(corresponding to characteristic wavenumbers Ak, /7 = 1/3,1/2,2/3). We observed
that for the filters with relatively small characteristic wavenumbers, the number of
zero derivatives at k = 7 /A should be considerably larger than for filters with char-
acteristic wavenumbers close to 7/A. If we chose this number small enough, then
the value of the Fourier transform of the filter for frequencies larger then character-
istic wavenumber may reach a large amplitude. Thus setting the large number of
derivatives at k = 7 /A forces the filter to have the desired shape.

2.2.2 Alternative construction of filters with desired properties

Linear constraints are often enough to obtain the desired filter. However, there
are situations, especially for non-symmetric filters, where it is difficult to choose a
limited number of constraints such that the filter is close to the desired shape. It is
much more desirable to specify the target filter function G(k) and to construct a
filter which will be close to it. One way of doing so is to find the set of filter weights
which satisfy all linear constraints and minimize a following functional

/Om (<{ew - <;~,(k)})2 dk +/0

where < {z} and 3 {z} denote correspondingly real and imaginary parts of a com-
plex number 2. Note that integral ranges as well as relative weights for real and
imaginary contributions to the functional can be arbitrarily set depending on the

n/A

(s {6 - c‘:‘(k)})2 dk,  (18)
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FIGURE 5. Fourier transform G(k) of the symmetric discrete filters with different

additional linear constraints corresponding to cases 1 (----), 2 (—-—), and 3
( ) given in Table II.

filter function G¢(k). The mathematical details of the minimization are given in
VLM. Figure 6(a) shows an example of an asymmetric filter with eight point sten-
cil, (K = 2 and L = 5). The real part of the filter is constrained to be 1/2 at
Ak/m = 1/2. The filter value and its first two derivatives are constrained to be zero
at k = 7/A. In order to improve the filter’s characteristics, the minimization was
performed, where requirements for two derivatives at k = w/A were relaxed and
quadratic minimization as described in VLM was used instead. The resulting filter
is shown in Fig. 6(b). Comparing both filters we can see that the filter presented
in Fig. 6(b) has better characteristics. We found that, in general, minimization
procedure gives better filters than the ones obtained using only linear constraints.

2.2.8 Pade filters

Discrete filters with vanishing moments are not limited to the simple weighted
average form of (13). Pade-type filters are described in this subsection as an example
of an alternative formulation. Other discrete filtering approaches can be utilized as
well but they will not be discussed here. A Pade filter is defined as

N; L _
S ViGim= D Wi (19)

m=-—M; I=—Kj

and requires the solution of linear systems of equations. The Fourier transform
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) of Fourier transform G(k) of the asymmetric discrete filter with
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case additional constraints Vo V41 V42 Vi3 Wo Wi1 Wiz Wi3 Wig Wis
A _ 543 _ 1405 313 51 63 105 15 _45 5 1
1| G(An/3)=1/2 43 LD A2 — %17 256 517 126 1024 513 1074
G (Ar)=0,m=0,...,9
A _ 7 5 7 115 5 _35 1
2 G(A7/2) =1/2 17 0 25 24 768 48 1536 0 —1536
G (Ar)=0,m=0,...,7
A _ 49 13 19 11 119 1 1
G (Ar)=0,m=0,...,3

TABLE 3. The values of the weight factors for different linearly constrained sym-
metric Pade filters with five vanishing moments.

G(k) associated with Pade-type filters is given by

Lj j —iAkl
Zl:—Kj wl

G(k) = —=- . (20)
Z:;—M,' V‘:ne—‘Akm
In the case of Pade filters conditions (14) can be rewritten as
L;j .
Y wi=1, (21a)
I=—Kj
N;
> =1, (21b)
m=—M;
N; L; '
Z mivi, = Z F'w], i=1,...n—1 (21¢)
m=—M_,~ =—K)

It is straightforward to constrain Pade filters to a specific value at specific fre-
quency. Nevertheless linear constraining of filter derivatives G(™) (k) at certain
frequency requires additional specification of filter value as well as all previous
derivatives. For more details on Pade filters we refer to (Lele, 1992).

The use of Pade-type filters gives more flexibility in constructing filters which are
closer to spectral cut-off filters. Examples of weights for symmetric (M; = N; and
K; = L;) Pade filters with five vanishing moments and different linear constraints
are given in Table 3 and associated Fourier transforms are presented in Fig. 7.
Comparing Figs. 5 and 7 it can be seen that Pade filters are considerably better

approximations of sharp cut-off filters.

2.2./ Commutation error of discrete filtering and differentiation

In Section 2.1 we demonstrated that the commutation error of continuous filter-
ing and differentiation operators is determined by the number of vanishing moments
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FIGURE 7. Fourier transform G(k) of the symmetric Pade filters with different

additional linear constraints corresponding to cases 1 (----), 2 (—-—), and 3
( ) given in Table III.

of the continuous filter. As it was mentioned earlier in this section the same con-
clusion is valid for discrete filters. In order to validate that discrete filtering and
differentiation commute up to the same order, we perform a numerical test in which
we differentiate numerically the Chebyshev polynomial of the 16-th order and de-
termine the commutation error of discrete filtering and differentiation operators.
Since the derivative of the Chebyshev polynomial can be calculated exactly, we can
calculate the truncation error of the numerical differentiation as well. We choose
the nonuniform computational mesh to be given by

tanh (7 (1- %))
S T T tamh(y) (22)

where Ny is the total number of grid points and + is the stretching parameter. The
choice for the hyperbolic grid stretching is motivated by its frequent use in both
DNS and LES simulations of wall-bounded flows. For the hyperbolic tangent grid
the ratio of largest to smallest grid size is a function of stretching parameter v and
is given by cosh® y/sinh+y. In this test we choose v = 2.75, which makes this ratio
approximately 62. The differentiation operator is chosen to be fourth order accurate
on the non-uniform grid. Figure 8 shows the truncation error of finite difference
scheme and commutation errors as a function of the total number of grid points
for filters with different number of zero moments. The results presented on Fig. 8
confirm that the discrete filtering and differentiation operators commute up to the
n-th order, provided that discrete filter has n — 1 vanishing moments.
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2.9 Conclusions

We have formulated general requirements for a filter having a non-uniform filter
width which ensure that the differentiation and filtering operations commute to
any desired order. Minimization of the commutation error is achieved by requiring
that the filter has a number of vanishing moments. Application of this filter to the
Navier-Stokes equations results in the standard LES equations which can be solved
on a non-uniform computational grid. The commutation error can be neglected
provided that the filter has n — 1 vanishing moments, where n is the order of the
numerical discretization scheme used to solve the LES equations. A general set of
rules for constructing discrete filters in complex geometries is provided. The use of
these filters ensures consistent derivation of discrete LES equations. The resulting
discrete filtering operation is very simple and efficient.

3. Future plans

The commutative discrete filters presented in this report enable us to perform
consistent large eddy simulations of inhomogeneous turbulent flows. The first step
in this direction is to study the effect of explicit filtering in LES of turbulent channel
flow. For that purpose we are planning to use the fourth-order scheme described
in (Morinishi et al., 1997). A discrete filter with a number of vanishing moments
will be applied to the incremental field at the conclusion of each time step. This
procedure guarantees that no high frequency signal is added to the field from the
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previous time step. The dynamic procedure should be modified due to explicit fil-
tering of nonlinear terms. As more experience is gained with the explicit filtering,
it will be determined whether explicit filtering is a cost-effective means of improv-
ing simulation results. If so, explicit filtering will be applied to more complicated
problems.
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On the use of discrete filters
for large eddy simulation

By T. S. Lund'

1. Motivation and objectives

The equations for large eddy simulation (LES) are derived formally by applying
a low pass-filter to the Navier-Stokes equations. This filtering must be repeated
at each time step in the solution procedure since the non-linear terms continually
generate frequencies higher than the assumed cutoff. In spite of this requirement,
an explicit filtering operation has rarely been performed in practice. There are a
few good reasons for this discrepancy, and perhaps the most compelling of these is
the prior lack of filter operators that commute with differentiation. Without com-
muting operators, the act of filtering alters the Navier-Stokes equations through the
addition of ‘commutation error terms’ (see Ghosal and Moin, 1995). Fortunately the
commutation issue has recently been resolved by Vasilyev and Lund (this volume)
who constructed filters that commute with differentiation to any specified order of
accuracy for arbitrary boundary conditions.

The use of explicit filters opens the possibility to improve the fidelity and con-
sistency of the LES procedure. By removing (or strongly damping) a band of the
highest frequencies allowed by the mesh, it is possible to reduce truncation and
aliasing errors. The filter is also well defined, which facilitates a comparison with
(filtered) experimental data. In order to realize these benefits, however, the filtering
process must be implemented correctly, and the filter itself should have satisfied a
few constraints in addition to those required by commutation. The purpose of this
paper is to outline the general procedure for explicit filtering and to specify the
constraints on the filter shape. A second objective of this paper is to revisit some
of the issues related to filtering in the dynamic model calculation and to propose a
general method of estimating the test filter width.

2. Accomplishments

2.1 Ezplicit filtering procedure
Application of a commuting filter to the Navier-stokes equations leads to

Ou; _
61:" - 0, (1)

du;, owmm;  9p 1 &u
ot + Oz; - a:v,'.*_Reaz,-axj' (2)

1 Present address: University of Texas at Arlington, Department of Mechanical and Aerospace
Engineering, Box 19018, Arlington, TX 76019-0018.
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The correlation %;u; is unknown in LES and is typically treated by computing the
product of the filtered velocities and modeling the remainder, i.e.

WUy = uin; + (W — 4it;) (3)
R A

Tl]

If this decomposition is substituted into the filtered momentum equation, a closed
equation for #; is obtained provided a model for 7i; is supplied. This equation can
be advanced in time from an initial @; field, and no ezplicit filtering operation is
required during the solution process. While this observation seems a bit unsettling, it
is often argued that the wavenumber-dependent characteristic of finite-differencing
errors act as an effective implicit filter’. This argument is based on the following

equivalence between a finite difference and the exact derivative of a filtered variable
(See Rogallo & Moin, 1984)

6z i 2Az dz J, (4)

bul  uip1—ui—y _ d /zm udz = du

i-1 i
While this equivalence is undoubtedly genuine, there are two significant problems
with extending the above observation to filtering as it applies to the solution of
the LES equations. First, the equivalence requires a connection between the exact
derivative of the filtered variable and the finite difference of the unfiltered variable.
Thus a strict application of this law to the filtered Navier-Stokes equations would
require that the original filterings be removed when the finite difference approxima-
tion is made. In order to avoid this problem, one can consider applying a second
filter to the Navier-Stokes equations and allow this one to be removed when the fi-
nite differences are taken. As we shall see, this argument can not be made rigorous,
either, due to the second complication that has to do with the multi-dimensionality
associated with the Navier-Stokes equations. The filter used to derive the LES equa-
tions must be a three-dimensional operation that represents averaging the velocity
field over a small volume in space. The filter implied by the finite difference opera-
tor, on the other hand, represents an average in a single coordinate direction. Thus
each term in the LES equations is effectively acted on by a different one-dimensional
filter when finite differences are used. In particular, the actual equation being solved
is

u  OdE " Gud,” | Qw9 omT _ omT omp™
ot oz, Oz, Oz Oz; oz, O3 Oz
N T Th
Re [ 0%z, 0%z, zs ] ’

(5)
where 62' and (’51‘ are the effective one-dimensional filters associated with the first
and second difference approximations respectively. It should be clear that the above
equation can not be derived from the Navier-Stokes equations since the various
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effective filters are not distributed uniformly. We conclude that although there
is an inherent filtering operation associated with finite-difference approximations,
their use does not lead to a well-defined effective three-dimensional filter.

With the issues associated with finite differences aside, there is another difficulty
associated with the use of the decomposition given in Eq. (3). The problem with
this formulation is that the non-linear product @;%; generates frequencies beyond
the characteristic frequency that defines ;. These high frequencies alias back as
resolved ones and therefore act as fictitious stresses. In principle the subgrid-scale
model, 7;j, could exactly cancel this effect, but it is unlikely that such a model
could be arranged. The obvious way to control the frequency content of the non-
linear terms is to filter them. This strategy would result in the following alternative
decomposition:

U U =ﬂgﬂj+(uiu}‘—ﬁ,ﬂj). (6)
N

’
T'-)-

If this relation together with a subgrid-scale model for 7/; is substituted into Eq. (2),
one again obtains a closed equation for @;, but this time with an additional ezplicit
filtering operation applied to the non-linear term. We now see that the implicit
filtering implied by the finite-difference operators shown in Eq. (5) is similar, al-
though the one-dimensional filterings are not nearly as effective at controlling the
frequency content of the solution.

While the decomposition of Eq. (6) has several advantageous properties from the
point of view of explicit filtering, there is one significant side effect that should
be mentioned. It can be shown that if Eq. (6) is substituted into Eq. (2), the
resulting equation is in general not Galilean invariant. The residual takes the form
¢;d(ii; —it;)/dz ;, where c; is the uniform translation velocity. The error is seen to be
proportional to the difference between the singly and doubly filtered velocity. This
difference will be zero for a Fourier cutoff filter, but will not vanish in the general
case. The spectral content of the error is proportional to G(k)(1 — G(k)) where
G(k) is the filter transfer function. This fact implies that error is only generated in
the wavenumber band where G(k) differs significantly from 0 or 1. It is also clear
that the error is maximized at 25%. Thus it is possible to minimize the error by
constructing the explicit filter to be as close as possible to a Fourier cutoff. It is also
possible to eliminate the Galilean invariance error all together by switching to yet
another alternative decomposition. This step amounts to adding a scale-similarity
like term to the filtered Navier-Stokes equations. The difficulty in this approach
is that the scale-similarity term generates higher frequencies and thus spoils the
explicit filtering procedure. Clearly this issue will require further study. At the
present time it appears best to continue with Eq. (6) but to use a filter that is as
close as possible to a Fourier cutoff. We shall see that there are other compelling
reasons to use this type of filter, and thus its use would be natural in practice.

In order to illustrate the explicit filtering procedure further, consider an Euler
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time stepping method applied to the LES equations:
owm, 0p Or; 1 &a 1"
THARIPERTI Y, ¢ 3 Ml bt VSRt S A U i
Ui Ui + Bz,- 6:1:,' 61:]' Re axja:l,'_,’ (7)

Note that the frequency content of each term on the right-hand side is limited
to the bar level (provided the subgrid-scale model is properly constructed). Thus
in advancing from time level n to n + 1, the frequency content of the solution is
not altered. This fact implies that the additional filtering of the non-linear term
(plus and analogous treatment of the subgrid-scale model) is sufficient to achieve an
explicit filtering of the velocity field for all time. It is also important to note that
the procedure outlined above is in general different from the 'filtering of the velocity
field after each time step’ procedure that has been alluded to in the literature, i.e.

dua; O6p Orn; 1 0% 1"

~*n+1 —n t
i =a” At ——t — —— —_
! it Oz; O0z; Oz; + Re 0z;0z;
u—in+l =a‘.n+l
1

While this approach results in the correct treatment for the non-linear term, it is
incorrect since the remaining terms are filtered twice. In particular, the additional
filtering of the solution at the previous time level, &7 is particularly harmful since
the cumulative effect over several time steps implies multiple filterings of the velocity
field, i.e.

art! = @' 4 AtRn-1 4 AtRn.

In general, repeated application of the same filter implies a filter with increased
width, and thus the procedure of filtering the velocity field after each time step
results in a severe loss in spectral information !.

With the correct explicit filtering procedure established (i.e. Eq. (7)), we are now
in a position to address some of the more subtle issues involved, the first of which is
commutivity. As discussed above, the issue of commutation between the filter and
derivative operators arises mainly in deriving the LES equations from the Navier-
Stokes system. Explicit filtering, on the other hand, involves the decomposition of
Eq. (6) where the filtered product, @%; , is replaced with #;@; + 7/;. As we have
seen this decomposition is not unique, and the decision to add the second bar to
the non-linear term is not required in the basic derivation of the LES system, but
rather is used stmply as a convenient means to control the frequency content of the
solution. Furthermore, Eq. (6) is a substitution for @;u;, which appears inside the
divergence operator. Thus, perhaps surprisingly, there does not appear to be any
direct commutation requirement on the second filter. Of course, there is an indirect

! Ltis important to note that the above argument does not apply to the Fourier cutoff filter where
repeated application has no cumulative effect. In this special case, filtering the velocity field at

each time step is permissible and is equivalent to the general procedure listed in Eq. (7).
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requirement if one requires the first and second bar filters to be identical (since
the former was used in the derivation of the LES system). It is not clear whether
consistency in this regard is really required in practice, however, and is appears
possible to use the second alternative decomposition

— P

wu; = uity + (U, — 44;), (8)

~
21

"
v

’
where () ~ () is a (perhaps non-commuting) approximation to the primary filter?.

A second subtle issue concerning explicit filtering has to do with an associated
false dissipation. The non-linear term in the classical LES decomposition (Eq. (3))
is energy conserving since @;d(#;it;)/dz; = d(;1/24;u;)/dzj, and thus an inte-
gral over the volume collapses to the surface fluxes via Gauss’ theorem. Unfor-
tunately this situation is changed when an explicit filter is applied to the non-
linear term. The second filter on the non-linear product prohibits the redistribu-
tion of velocity components used to obtain a divergence form and one is left with
4;d(T;)/dz; = d(@Ug;)/dz; — (dii/dz;)aiw;. The second term on the right-
hand side does not vanish in general when integrated over the volume and in fact
bears some resemblance to the turbulent production. More quantitative informa-
tion regarding the false dissipation can be obtained by looking at the Fourier-space
energy equation for isotropic turbulence which reads

df:'i(tk) = (—iki}, PmiG(k) kzzppziqqﬂi(p)ﬁj(q» _Ezgsz(k)’

~ -

(k)

where E(k) = 1/2(i}4;) is the spectral energy density, i; is the Fourier transform
of the velocity (bar omitted for simplicity), Py is the divergence-free projection
operator, G(k) is the transfer function associated with the explicit filter, ()* denotes
complex conjugate, and () is a shell average. It is clear that the explicit filter affects
only the non-linear transfer term, T(k). This term will be conservative if its integral
vanishes, i.e. f0°° T(k)dk = 0. It can be shown that the integral will indeed vanish
if the filter function G(k) is a Fourier cutoff that passes frequencies up to some limit
kmaz and if the velocity field is truncated at this level before the transfer term is
constructed (Kraichnan, 1976). For non-sharp filters the transfer will not integrate
to zero since the weighting introduced by a smoothly-varying G(k) destroys the
symmetries required to achieve complete cancellation. Further analysis reveals that
the residual transfer arises only out of interactions with wavenumber components
where G # 1. The sign of this residual transfer is not fixed kinematically but
is constrained to be negative for developed turbulence with a normal down-scale

2 The formulation with an approximate second filter is probably always required in practice since
even ‘commuting’ filters only do so to a specified order of accuracy (see Vasilyev and Lund, this

volume)
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energy cascade. Thus non-sharp filters lead to a false dissipation that is proportional
to the degree to which the filter departs from a sharp-cutoff. For this reason, it is
important to use filters that are close approximations to a Fourier cutoff.

It is worthwhile to note that the approximately-commuting filters developed by
Vasilyev and Lund (this volume) become increasingly better approximations to a
Fourier cutoff as the commutation error is reduced. Thus use of these filters will
allow for a consistent explicit filtering scheme (first and second filters the same) and
will introduce only a small amount of false dissipation.

2.2 Accurate estimation of discrete filter width

The previous discussion was concerned with explicit filtering of the non-linear
terms as a means to improve the fidelity of the LES approach. In this subsection
we consider a rather distinct filtering operation that is used in the dynamic mod-
eling procedure. In order to estimate subgrid-scale model coefficients, the dynamic
model uses a ‘test filtering’ operation to isolate the stresses produced by a band
of the smallest resolved motions. Fitting model expressions to these stresses then
provides a mechanism to determine any unknown model coefficients. The only pa-
rameter in the dynamic procedure is the ratio of the test to primary filter width,
a, which is usually taken to be a = 2.0 (there is very little sensitivity to this pa-
rameter). It goes without saying that the numerical value of the filter width ratio
used in the dynamic procedure must match the properties of the test filter actually
used in the calculation. While this seems like a trivial point, there can be some
ambiguity in determining the test filter width. Any errors in this regard will have
a negative effect on the solution and should be avoided. There has also been some
discussion in the literature regarding the importance of the test filter shape. While
the dynamic model derivation presupposes that the test filter is similar in form to
the primary filter, there have been several attempts to improve on matters by ‘op-
timizing’ the test filter shape (Najjar and Tafti, 1996, Spyropoulos and Blaisdell,
1993). As we shall see most of these latter attempts involve fortuitous results that
arise from use of an inconsistent filter width. In order to assess the effect of test
filter shape, a numerical experiment was designed to investigate this issue. The
1sotropic decay experiment of Comte-Bellot and Corrsin (1971) was simulated using
LES on a 32° mesh. The pseudo-spectral code of Rogallo (1981) was used with
the volume-averaged form of the dynamic Smagorinsky model forming the closure.
The test filter type was varied and the resulting kinetic energy decay histories com-
pared with the (filtered) experimental data. The kinetic energy history provides a
good measure of the accuracy of the subgrid-scale model since the model provides
the bulk of the dissipation at this coarse resolution. The test results are shown in
Fig. 1. It is clear that the filter type has almost no effect on the results. This fact
1s reassuring since it provides additional evidence on the robustness of the dynamic
model. It also raises an interesting point that, although the derivation would sug-
gest otherwise, there does not seem to be any practical requirement for the test and
primary filters to be of the same form (Fourier cutoff in this case).

As mentioned above, most of the perceived sensitivity to test filter type noted
in the literature has to do with the use of an incorrect value for the filter width
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FIGURE 1. Resolved kinetic energy decay history computed with the dynamic
model using various test filter types: , Fourier cutoff; ---- , Gaussian; - ,
physical space top-hat; e, experimental of Comte-Bellot and Corrsin (1971).

ratio. This difficulty is usually associated with the inability to estimate the test
filter width properly. These difficulties can be avoided by following the procedures

listed below.
The width of a positive-definite filter is described best in terms of its standard

deviation (Leonard, 1973):
o0
Af = 12/ z2G(z)dz, 9)
—00

where the factor of 12 assures that the width of a physical-space top-hat filter is
equal to the interval over which the filter kernel is non-zero. While this formula
has been available for quite some time, it does not seem to have been transferred to
the realm of discrete filters, which are much more common in practice. The general
discrete filter

(N-1)/2
di= Wit (10)
j:—(N—l)/2

has an associated kernel that can be written as

(N-1}/2
Ga-z)= Y, 6  Wblz—a'+jd) (11)
j=—(N-1)/2
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When this expression is substituted into Eq. (9) and the integral performed, we
arrive at the following discrete analog

(N-1)/2
a=Af/A= 12 ) W (12)
J=~(N-1})/2

where A is the computational grid spacing.

In order to illustrate the importance of an accurate estimation of the test filter
width, we shall consider two different discrete approximations to a physical space
top-hat filter of width 2A,

1 I+At
ﬁ(l‘) = EA—:L‘/ A udx. (13)

In a discrete system we consider i#(z;) = &; where j is the mesh index. The integral
is evaluated over the interval from z;_; to z,4, where only the three discrete values
uj-1, uj, and ujy) are available. If Simpson’s rule is used to perform the quadrature,
we obtain the sequence of weights (W_, W, W;) = (1/6,2/3, 1/6). If these values
are substituted in Eq. (12), we find Ay/A = 2 as expected. If the trapezoidal rule is
used to evaluate the integral, however, we obtain (W_,, Wy, Wi) = (1/4,1/2,1/4)
which, according to Eq. (12), have a width A £/A = /6. Thus, perhaps surprisingly,
the details of the discrete quadrature can affect the filter width. This is a subtle
point that has been overlooked in several previous dynamic model simulations. If
the weights associated with the Trapezoidal rule are used but the inconsistent value
of the filter width ratio 2.0 is used, the dynamic modeling procedure will loose
accuracy. Figure 2 illustrates this effect where kinetic energy decay histories are
shown for three cases: (1) Simpson’s rule, a = 2; (2) Trapezoidal rule, a = 2; and
(3) Trapezoidal rule, a = v/6. The first and third cases use consistent values of
the filter width ratio and are seen to lead to nearly identical results that are in
good agreement with the experimental data. Case (2), on the other hand, uses an
inconsistent value of the filter width ratio, and the results are clearly incorrect. If
the subtle details of how to compute the filter width ratio correctly were not known,
one might mistakenly attribute the poor performance of case (2) to the filter type
itself. Unfortunately this type of confusion has appeared in the literature, and
there are papers that recommend one filter over another (Najjar and Tafti, 1996,
Spyropoulos and Blaisdell, 1993).

The foregoing discussion regarding discrete filters assumes that the discrete sec-
ond moment used in Eq. (12) is non-zero. There are an important class of filters
where this is not the case, however. In particular, Vasilyev and Lund (this volume)
show that a filter with n—1 vanishing moments will commute to with differentiation
to order n. Since the n'! filter moment is directly related to the n'® derivative of
the filter transfer function at zero wavenumber, a filter with n vanishing moments
also has n vanishing derivatives at the origin in wavenumber space. Thus by Taylor
series, the transfer function remains very close to unity for sizable displacements in
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FIGURE 2. Effect of a mismatch between the true test filter width and the value
used in the dynamic model calculation. , Simpson’s rule, a = 2.00; ----,
Trapezoidal rule, a = 2.00; -~ , Trapezoidal rule, a = V6; o , experimental of
Comte-Bellot and Corrsin (1971).

wavenumber, making these filters good approximations to a Fourier cutoff (at least
for low to moderate wavenumbers).

The use of filters with vanishing moments presents a problem since the width can
not be based on the second moment a la Eq. (12). While a similar expression based
on a higher moment could be used, one would eventually encounter a filter where
even this moment vanishes. Several more robust definitions of the filter width were
investigated and these will be discussed below.

In order to facilitate the discussion, it will be convenient to consider the filter
transfer function, which is obtained by taking the Fourier transform of Eq. (11),

2.
(N-1)/2

Gky= Y, Wjcos(jkA). (14)
j=—(N-1)/2

In deriving this result the weights are assumed to be symmetric with respect to j.
The first alternative method of determining the filter width takes advantage of
the fact that some of the weights must be negative in order for the sum in Eq. (12) to
vanish. More specifically, if a trigonometric interpolant is fit through the weights as
a function of their index, an oscillatory distribution similar to the sin(rz [/Af)/(7z)
function characteristic of a Fourier cutoff is obtained. The position of the first zero
crossing can then be used as an estimate of the filter width. The interpolating series
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1s

= j s
W(z)=—= G, exp (i21r—-——> , (15)
N (12 NA

where the G; are the discrete values of the filter transfer function:

(N-1)/2

G, =G (%’%) = Y Wicos (1%) (16)

I=—(N-1)/2

Note that the interpolant is purely real since the G must be symmetric with respect
to 7.

The second alternative strategy works directly with the filter transfer function.
In this case the filter width is taken to be proportional to the inverse wavenumber
where the filter transfer function falls to 0.5. This rule gives o = n/(k;A).

The third alternative is to base the filter width on the second moment of the filter
transfer function rather than on the second moment of the filter kernel. Defining
the second moment as

M? = / e k2G(k)dk (17)

we may estimate the filter width from

a= [5[};%] *. (18)

The constants in this formula were chosen so that it predicts the correct width
in the case of an exact Fourier cutoff. The second moment for a discrete filter is
found by substituting Eq. (14) into Eq. (17) and performing the integration. These
operations lead to

(N-1)/2 j
M2=$ T W + 4r Z (1) ] (19)

where weights are assumed to be symmetric with respect to j. Combining Egs. (18)
and (19) we obtain the final result

-1
(N-1)/2 ;
W+12 Y (J,ﬁ)’w,] . (20)

i=1

As an illustration of a filter that has a vanishing second moment in physical space,
consider filter C discussed by Najjar and Tafti (1996). The stencil contains 7 points,
and the weights are (1/256)(1, -18, 63, 164, 63, -18, 1). The interpolating function
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FIGURE 3. Filter weights and associated transfer function for filter C of Najjar
and Tafti (1996).

for the weights as well as the filter transfer function are shown in Fig. 3. The position
of the first zero-crossing in physical space gives the estimate a ~ 1.5, the location
of the G = 0.5 point gives a ~ 1.53, and the second moment of the transfer function
gives a ~ 1.46. While the three methods give nearly the same result, we shall see
that there is a slight advantage to width predicted by the second moment. Other
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FIGURE 4. Results for a filter with a vanishing second moment in physical space.
, Fourier cutoff; ---- filter C, a = 2.00; —-— | filter C, a =155 - ,

filter C, a = 1.46. Filter C has weights (1/256)(1, -18, 63, 164, 63, -18, 1) and is
described in Najjar and Tafti (1996).

filters were investigated where differences among the three estimates of the width
were greater, and in each case the second moment rule predicted the width most
accurately. The Najjar and Tafti filter was chosen for the purpose of illustration
since these authors incorrectly assigned a value of @ = 2.0 to this filter. The effect
of this mismatch is shown in Fig. 4 where the kinetic energy decay history is plotted
for the Najjar and Tafti filter using several different values of . The value a = 2.0
is clearly incorrect while the estimate a ~ 1.46 given by the second moment of
the transfer function is the most accurate. While Najjar and Tafti observed some
improvement in their computational results when filter C was used with a = 2, this
was most likely a fortuitous effect brought on by a cancellation of errors. Chances
are that, if a = 1.46 were used instead, the results would have been nearly identical
to their other cases where the value of o was consistent with the filter used.

3. Conclusions and future plans

Explicit filtering can be used in the LES solution procedure as a means of reducing
truncation and aliasing errors. The required operation involves only filtering the
non-linear terms and amounts to a slightly different definition of subgrid-scale stress.
The procedure is in general different from filtering the entire velocity field at each
time step, which could lead to a severe damping of even the largest scales. The
explicit filter must commute with differentiation only if one insists that the primary
and secondary filters be identical. If strict consistency in this regard is not required,
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more general filters can be considered, and the use of approximately commuting
filters can be justified on a higher level.

The dynamic modeling procedure was shown to be extremely robust with respect
to the test filter type but quite sensitive to mismatches between the true filter
width ratio and the value used in the calculation of the model coefficient. Much
of the apparent sensitivity to test filter type reported in the literature is related
to inaccurate estimates for the test filter width and not to the shape of the filter
itself. General rules were developed for accurate estimation of test filter width, and
these are related to the second moments of either the filter kernel or its associated
transfer function.

Future work will focus on the use of explicit filters in actual large eddy simula-
tions. This work is in progress, and some preliminary results for three-dimensional
explicit filtering in turbulent channel flow simulations have been obtained. The
indication from these tests is that, while explicit filtering definitely improves the so-
lution, some issues have arisen regarding the required reformulation of the dynamic
model as well as the smearing effect of filtering in the inhomogeneous wall-normal
direction. Current work is focusing on resolving these issues and in assessing the
overall effectiveness of the explicit filtering strategy.
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Wall models in large eddy
simulation of separated flow

By W. Cabot

1. Motivation and objectives

The desire to perform large eddy simulation (LES) of wall-bounded turbulent
flows at relatively high Reynolds numbers is typically confounded by the severe
resolution requirements near the walls. The structure of the turbulent flow in a
boundary layer can become very fine in the near-wall region, scaling as the distance
from the wall, and the numerical grid required to resolve it, therefore increases
dramatically with Reynolds number. In channel flow LES at moderate Reynolds
number, for instance, about half of the grid points must be dedicated to the near-
wall flow when it is resolved on a stretched mesh, and the time step is severely
reduced by the CFL condition for the fine near-wall scales. The situation becomes
even worse at higher Reynolds numbers. The finer near-wall scales also require the
subgrid-scale (SGS) model in the LES to describe a larger share of the Reynolds
stress than in the core of the flow; this may lead to substantial inaccuracies when
standard SGS models based on isotropic models, like the popular Smagorinsky
model, are employed in the near-wall region.

To perform LES of high Reynolds numbers, wall-bounded turbulent flow, one
needs to remove the requirement of resolving the near-wall region by (a) simulating
only the core region of the flow with approximate boundary conditions applied on
the boundaries, or (b) simulating the entire domain, including the walls, with the
near-wall forces appropriately modeled. Approach (a) has much in common with
domain decomposition methods (see Baggett in this volume). Approach (b) has
been employed by Deardorff (1970), Schumann (1975), Grétzbach (1987), Piomelli
et al. (1989), and others (see reviews by Piomelli et al., 1989; Bagwell et al., 1993),
who supplied boundary conditions for the flow components tangential to the walls
in a channel based on the logarithmic law of the wall. Balaras et al. (1996) and
Cabot (1995, 1996) also employed thin boundary layer equations to predict wall
stress boundary conditions in attached channel and duct flow and in separated flow
behind a step. While this strategy works adequately in predicting accurate mean
flow statistics in attached flow, it fares more poorly in separating, reattaching, and
recovering flow, in part because the assumptions used in modeling the wall (near-
wall equilibrium conditions<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>